Sick tattoos

Image by Anand Kumar from Pixabay

Researchers at MIT and Harvard have new skin in the game when it comes to monitoring people’s bodily health. They have developed a new wearable technology in the form of colour- and shape-changing tattoos. These tattoos work by using bio-sensitive inks, changing colour, fading away or appearing under different coloured illumination, depending on your body chemistry. They could, for example, change their colour, or shape as their parts fade away, depending on your blood glucose levels.

This kind of constantly on, constantly working body monitoring ensures that there is nothing to fall off, get broken or run out of power. That’s important in chronic conditions like diabetes where monitoring and controlling blood glucose levels is crucial to the person’s health. The project, called Dermal Abyss, brings together scientists and artists in a new way to create a data interface on your skin.

There are still lots of questions to answer, like how long will the tattoos last and would people be happy displaying their health status to anyone who catches a glimpse of their body art? How would you feel having your body stats displayed on your tats? It’s a future question for researchers to draw out the answer to.

– Peter W. McOwan, Queen Mary University of London, Autumn 2018

One in the eye for wearable tech

Contact lenses, normally used to simply, but usefully, correct people’s vision, could in the future do far more.

Tiny microelectronic circuits, antennae and sensors can now be fabricated and set in the plastic of contact lenses. Researchers are looking at the possibility of using such sensors to sample and transmit the glucose level in the eye moisture: useful information for diabetics. Others are looking at lenses that can change your focus, or even project data onto the lens, allowing new forms of augmented and virtual reality.

Conveniently, you can turn the frequent natural motion from the blinks of your eye into enough power to run the sensors and transmitter, doing away with the need for charging. All this means that smart contact lenses could be a real eye opener for wearable tech.

– Peter W. McOwan, Queen Mary University of London, Autumn 2018

Smart tablets to swallow

The first ever smart pill has been approved for use. It’s like any other pill except that this one has a sensor inside it and it comes with a tracking device patch you wear to make sure you take it.

A big problem with medicine is remembering to take it. It’s common for people to be unsure whether they did take today’s tablet or not. Getting it wrong regularly can make a difference to how quickly you recover from illness. Many medicines are also very, very expensive. Mass-produced electronics, on the other hand, are cheap. So could the smart pill be a new, potentially useful, solution? The pill contains a sensor that is triggered when the pill dissolves and the sensor meets your stomach acids. When it does, the patch you wear detects its signal and sends a message to your phone to record the fact. The specially made sensor itself is harmless and safe to swallow. Your phone’s app can then, if you allow it, tell your doctor so that they know whether you are taking the pills correctly or not.

Smart pills could also be invaluable for medical researchers. In medical trials of new drugs, knowing whether patients took the pills correctly is important but difficult to know. If a large number of patients don’t, that could be a reason why the drugs appeared less effective than expected. Smart pills could allow researchers to better work out how regularly a drug needs to be taken to still work. 

More futuristically still, such pills may form part of a future health artificial intelligence system that is personalised to you. It would collect data about you and your condition from a wide range of sensors recording anything relevant: from whether you’ve taken pills to how active you’ve been, your heart rate, blood pressure and so on: in fact anything useful that can be sensed. Then, using big data techniques to crunch all that data about you, it will tailor your treatment. For example, such a system may be better able to work out how a drug affects you personally, and so be better able to match doses to your body. It may be able to give you personalised advice about what to eat and drink, even predicting when your condition could be about to get better or worse. This could make a massive difference to life for those with long term illnesses like rheumatoid arthritis or multiple sclerosis, where symptoms flare up and die away unpredictably. It could also help the doctors who currently must find the right drug and dose for each person by trial and error.

Computing in future could be looking after your health personally, as long as you are willing to wear it both inside and out.

– Paul Curzon, Queen Mary University of London