How do you solve a problem like arthritis?

Some diseases can’t be cured. Doctors and nurses just try to control the disease to stop them ruining people’s lives. Perhaps smartphone apps can pull off the trick of giving patients better care while giving clinicians more time to spend with the patients who most need them? A Venn diagram is at the centre of the Queen Mary team’s prototype.

A Venn diagram of low participation, low empowerment and low independence with images linked to each - people eating in a resterount, a person holding out arms at the top of a peak and two people walking.

What is rheumatoid arthritis?

Normally your immune system does a good job of fighting infection and keeping you healthy. But, if you have an autoimmune disease, it can also attack your healthy cells, causing inflammation and damage. Rheumatoid arthritis is like this: a painful condition that mostly affects hands, knees and feet as the person’s immune system attacks their joints, making them swell painfully. It affects around 400,000 people in the UK and is more common in women than men.

People with the disease alternate between periods when it is under control and they have few symptoms, and with days or weeks of painful ‘flares’ where it is very, very bad. During these flares it especially affects a person’s ability to live a normal life. It can be hard to move around comfortably, do exercise – plus it interferes with their ability to work. It can also leave them totally reliant on family and friends just to do everyday things like dress or eat, never mind go out. This can lead to depression and puts a strain on friendships.

Treating the disease

Treatment, which can include tablets, injections, physiotherapy and sometimes surgery, slows the disease, keeping it under control for long periods. Sufferers are also given advice on lifestyle changes. This all reduces the risk of joint damage and helps people live their life more fully.

At appointments, doctors collect information to help them see how the disease is progressing. A Disease Activity Score (DAS) calculator lets them combine measurements for pain, how tender or swollen their patient’s joints are and how many joints are affected. Regular blood tests keep track of the amount of inflammation and how the body is reacting to drugs. This helps them decide if they need to adjust the medication.

If it is caught early, modern medicine reduces the worst effects of the disease, helped by keeping a close eye on the Disease Activity Score as treatments may need to be repeatedly adjusted to control flares. This requires regular hospital visits which uses up scarce healthcare resources and is very time-consuming for patients. It is hampered because hospital appointments may only happen twice a year due to the number of patients. Everyone wants to give more personalised care, but hospitals just can’t afford to provide it.

Supporting doctors

So, what do you do when there just aren’t enough doctors to see everyone as regularly as needed to maintain their patients’ wellbeing? One solution is to use remote monitoring with an app on a patient’s smartphone, so involving patients more directly in their own care. They can use such apps to regularly record their own disease activity measurements, sharing the information with their doctor to save visiting the hospital.

A smart app

This is an improvement, but the measurements still require expert monitoring and can take more of the doctor’s time. However, if smartphones can actually be made to be, well, smart, then they could help give advice between hospital visits and alert the hospital team, when needed, so they can step in. This might involve, for example, loading the app with background knowledge about rheumatoid arthritis, expert knowledge from lots of doctors, and creating an artificial intelligence to use this information effectively for each patient.

Hospital specialists and computer scientists at Queen Mary are developing such a prototype based on Bayesian networks as the artificial intelligence core. Bayesian networks are based on reasoning about the causes of things and how likely different things are to be the cause of something being observed. Building the prototype involves finding out if patients and clinicians find such tools useful and acceptable (some people might find clinic visits reassuring, while some may be keener to avoid taking the time off work, for example).

Smart and patient centred

This still focusses on a clinician’s view of treatment using drugs though. With a smartphone app we can perhaps do better and take the person’s life into account – but how? The first step is to understand patient goals. Patients would need to be willing to share lots of information about themselves so that the software can learn as much as possible about them. Eventually, this might be done using sensors that automatically detect information: how much pain they are in, how stiff their joints are, how much they move around, how long it takes them to get out of a chair, how much sleep they get, how often they meet others, if and when they take their medicine, and so on. Rather than just focussing on medical treatment it can then focus advice ‘holistically’ on the whole person.

The Queen Mary team’s approach is centred around three different things: helping people with physical independence so they can move around and look after themselves; empowering them to manage their condition and general well-being themselves; and participation in the sense of helping them socialise, keep friendships and maintain family bonds.

The Bayesian network processes the information about patients and computes their predicted levels of independence, empowerment and participation, working out how good or bad things are for them at the moment. This places them in one of seven positions in a Venn diagram of the three dimensions over which areas need most attention. It then gives appropriate advice, aiming to keep all three dimensions in balance, monitoring what happens, but also alerting the hospital when necessary.

So, for example, if the Bayesian network judges independence low, participation high and empowerment low, the patient is in the Venn diagram intersection of low empowerment and low independence. Advice in the following weeks, based on this area of the Venn diagram, would focus on things like coping with pain and stiffness, getting better sleep, as well as how to manage the disease in general.

By personalising advice and focusing on the whole person, it is hoped patients will get more appropriate care as soon as they need it, but doctors’ time will also be freed up to focus on the patients who most need their help.

– Jo Brodie, Hamit Soyel and Paul Curzon, Queen Mary University of London, Spring 2021

Download Issue 27 of the cs4fn magazine on Smart Health here.

This post and issue 27 of the cs4fn magazine have been funded by EPSRC as part of the PAMBAYESIAN project.

Are you there yet?

Plenty of people love the Weasley family’s clock from the Harry Potter books and films. It shows where members of the family are at any given time. Instead of numbers giving the time, the clock face has locations where someone might be (home, school, shopping) and the many hands on the clock show the family members. The wizarding world uses magic to make their whereabouts clock work, but muggles (and squibs) can use mobile network data to build a simple version, and use Bayesian networks to improve it.

A cell phone tower looking up from inside to a blue sky

Your mobile phone is in contact with several cell towers in the mobile provider’s network. When you want to send a message, it goes first to the nearest cell tower before passing through the network, finally reaching your friend’s phone. As you move around, from home to school, for example, you will pass several towers. The closer you are to a tower the stronger the signal there, and the phone network uses this to estimate where you are, based on signal strength from several towers. This means that, as long as your phone is with you, it can act as a sensor for your location and track you, just like the Weasley’s whereabouts clock.

You could also have a similar system at home that monitors your location, so that it switches on the lights and heating as you get closer to home to welcome you back. On a typical day you might head home somewhere between 3 and 6pm (depending on after-school events) and as you leave school the connection to your phone from the tower nearest the school will weaken, but connections will strengthen with the other cell towers on your route home. But what if you appear to be heading home at 11 in the morning? Perhaps you are, or maybe actually the signal has just dropped from the tower nearest to the school so a tower nearer your home is now getting the strongest signal!

A system using Bayesian logic to determine ‘near home’ or ‘not near home’ can be trained to put things into context. Unless you are ill, it’s unlikely that you’d be heading home before the afternoon so you can use these predicted timings to give a likelihood score of an event (such as you heading home). A Bayesian network takes a piece of information (‘person might be nearby’) and considers this in the context of previous knowledge (‘and that’s expected at this time of day so probably true’ or ‘but is unlikely to be nearby now so more information is needed’). Unlike machine learning which just looks for any patterns in data, in a Bayesian networks approach the way one thing being considered does or does not cause other things is built in from the outset. Here it builds in the different possible causes of the signal dropping at a cell tower.

You could also set up a similar system in a home using wifi points to predict where you are and so what you are doing. Information like that could then feed data into a personalised artificial intelligence looking after you. Not all magic has to be run by magic!

-Jo Brodie, Queen Mary University of London, Spring 2021

Download Issue 27 of the cs4fn magazine on Smart Health here.

This post and issue 27 of the cs4fn magazine have been funded by EPSRC as part of the PAMBAYESIAN project. This article was inspired by

Inspired by the blog on Presence Detection Part 1: Home Assistant & Bayesian Probability and a previous cs4fn article on making a Whereabouts Clock.

Sick tattoos

Image by Anand Kumar from Pixabay

Researchers at MIT and Harvard have new skin in the game when it comes to monitoring people’s bodily health. They have developed a new wearable technology in the form of colour- and shape-changing tattoos. These tattoos work by using bio-sensitive inks, changing colour, fading away or appearing under different coloured illumination, depending on your body chemistry. They could, for example, change their colour, or shape as their parts fade away, depending on your blood glucose levels.

This kind of constantly on, constantly working body monitoring ensures that there is nothing to fall off, get broken or run out of power. That’s important in chronic conditions like diabetes where monitoring and controlling blood glucose levels is crucial to the person’s health. The project, called Dermal Abyss, brings together scientists and artists in a new way to create a data interface on your skin.

There are still lots of questions to answer, like how long will the tattoos last and would people be happy displaying their health status to anyone who catches a glimpse of their body art? How would you feel having your body stats displayed on your tats? It’s a future question for researchers to draw out the answer to.

– Peter W. McOwan, Queen Mary University of London, Autumn 2018

One in the eye for wearable tech

Contact lenses, normally used to simply, but usefully, correct people’s vision, could in the future do far more.

Tiny microelectronic circuits, antennae and sensors can now be fabricated and set in the plastic of contact lenses. Researchers are looking at the possibility of using such sensors to sample and transmit the glucose level in the eye moisture: useful information for diabetics. Others are looking at lenses that can change your focus, or even project data onto the lens, allowing new forms of augmented and virtual reality.

Conveniently, you can turn the frequent natural motion from the blinks of your eye into enough power to run the sensors and transmitter, doing away with the need for charging. All this means that smart contact lenses could be a real eye opener for wearable tech.

– Peter W. McOwan, Queen Mary University of London, Autumn 2018