Freddie Figgers – the abandoned baby who became a runaway telecom tech star

by Jo Brodie and Paul Curzon, Queen Mary University of London

As a baby, born in the US in 1989, Freddie Figgers was abandoned by his biological parents but he was brought up with love and kindness by two much older adoptive parents who kindled his early enthusiasm for fixing things and inspired his work in smart health. He now runs the first Black-owned telecommunications company in the US.

Freddie Figgers in 2016

When Freddie was 9 his father bought him an old (broken) computer from a charity shop to play around with. He’d previously enjoyed tinkering with his father’s collection of radios and alarm clocks and when he opened up the computer could see which of its components and soldering links were broken. He spotted that he could replace these with the same kinds of components from one of his dad’s old radios and, after several attempts, soon his computer was working again – Freddie was hooked, and he started to learn how to code.

When he was 12 he attended an after-school club and set to work fixing the school’s broken computers. His skill impressed the club’s leader, who also happened to be the local Mayor, and soon Freddie was being paid several dollars an hour to repair even more computers for the Mayor’s office (in the city of Quincy, Florida) and her staff. A few years later Quincy needed a new system to ensure that everyone’s water pressure was correct. A company offered to create software to monitor the water pressure gauges and said it would cost 600,000 dollars. Freddie, now 15 and still working with the Mayor, offered to create a low-cost program of his own and he saved the city thousands in doing so.

He was soon offered other contracts and used the money coming in to set up his own computing business. He heard about an insurance company in another US city whose offices had been badly damaged by a tornado and lost all of their customers’ records. That gave him the idea to set up a cloud computing service (which means that the data are stored in different places and if one is damaged the data can easily be recovered from the others).

His father, now quite elderly, had dementia and regularly wandered off and got lost. Freddie found an ingenious way to help him by rigging up one of his dad’s shoes with a GPS detector and two-way communication connected to his computer – he could talk to his dad through the shoe! If his dad was missing Freddie could talk to him, find out where he was and go and get him. Freddie later sold his shoe tracker for over 2 million dollars.

Living in a rural area he knew that mobile phone coverage and access to the internet was not as good as in larger cities. Big telecommunications companies are not keen to invest their money and equipment in areas with much smaller populations so instead Freddie decided to set up his own. It took him quite a few applications to the FCC (the US’ Federal Communications Commission who regulate internet and phone providers) but eventually, at 21, he was both the youngest and the first Black person in the US to own a telecoms company.

Most telecoms companies just provide a network service but his company also creates affordable smart phones which have ‘multi-user profiles’ (meaning that phones can be shared by several people in a family, each with their own profile). The death of his mother’s uncle, from a diabetic coma, also inspired him to create a networked blood glucose (sugar) meter that can link up wirelessly to any mobile phone. This not only lets someone share their blood glucose measurements with their healthcare team, but also with close family members who can help keep them safe while their glucose levels are too high.

Freddie has created many tools to help people in different ways through his work in health and communications – he’s even helping the next generation too. He’s also created a ‘Hidden Figgers’ scholarship to encourage young people in the US to take up tech careers, so perhaps we’ll see a few more fantastic folk like Freddie Figgers in the future.


This article was originally published on our sister website at Teaching London Computing (which has lots of free resources for computing teachers). It hasn’t yet been published in an issue of CS4FN but you can download all of our free magazines here.

See more in ‘Celebrating Diversity in Computing

We have free posters to download and some information about the different people who’ve helped make modern computing what it is today.

Screenshot showing the vibrant blue posters on the left and the muted sepia-toned posters on the right

Or click here: Celebrating diversity in computing

Further reading

See also

A ‘shoe tech’ device for people who have no sense of that direction – read about it in ‘Follow that Shoe’ on the last page of the wearable technology issue of CS4FN (‘Technology Worn Out (And About)’, issue 25).

Right to Repair – a European movement to make it easier for people to repair their devices, or even just change the battery in a smartphone themselves. See also the London-based Restart Project which is arguing for the same in the UK.


This blog is funded through EPSRC grant EP/W033615/1.

The heart of an Arabic programming language

A colourful repeating geometric pattern

‘Hello World’, in Arabic

by Paul Curzon, Queen Mary University of London

So far almost all computer languages have been written in English, but that doesn’t need to be the case. Computers don’t care. Computer scientist Ramsey Nasser developed the first programming language that uses Arabic script. His computer language is called قلب. In English, it’s pronounced “Qalb”, after the Arabic word for heart. As long as a computer understands what to do with the instructions it’s given, they can be in any form, from numbers to letters to images.

A version of this article was originally published on the CS4FN website and a copy also appears on page 2 of Issue 16 of the magazine (see Related magazines below).

You can also download PDF copies of all of our free magazines.


Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.

Escape from Egypt

The humble escape character

by Paul Curzon, Queen Mary University of London

Egyptian hieroglyphs from Luxor
Hieroglyphs at Luxor. Image by Alexander Paukner from Pixabay 

The escape character is a rather small and humble thing, often ignored, easily misunderstood but vital in programming languages. It is used simply to say symbols that follow should be treated differently. The n in \n is no longer just an n but a newline character, for example. It is the escape character \ that makes the change. The escape character has a long history dating back to at least Ancient Egypt and probably earlier.

The Ancient Egyptians famously used a language of pictures to write: hieroglyphs. How to read the language was lost for thousands of years, and it proved to be fiendishly difficult to decipher. The key to doing this turned out to be the Rosetta Stone, discovered when Napoleon invaded Egypt. It contained the same text in three different languages: the Hieroglyphic script, Greek and also an Egyptian script called Demotic.

A whole series of scholars ultimately contributed, but the final decipherment was done by Jean-François Champollion. Part of the difficulty in decipherment, even with a Greek translation of the Rosetta Stone text available, was because it wasn’t, as commonly thought, just a language where symbolic pictures represented words (a picture of the sun, meaning sun, for example). Instead, it combined several different systems of writing but using the same symbols. Those symbols could be read in different ways. The first way was as alphabetic letters that stood for consonants (like b, d and p in our alphabet). Words could be spelled out in this alphabet. The second was phonetically where symbols could stand for groups of such sounds. Finally, the picture could stand not for a sound but for a meaning. A picture of a duck could mean a particular sound or it could mean a duck!

Part of the reason it took so long to decipher the language was that it was assumed that all the symbols were pictures of the things they represented. It was only when eventually scholars started to treat some as though they represented sounds that progress was made. Even more progress was made when it was realised the same symbol meant different things and might be read in a different way, even in the same phrase.

However, if the same symbol meant different things in different places of a passage, how on earth could even Egyptian readers tell? How might you indicate a particular group of characters had a special meaning?

A cartouche for Cleopatra
A cartouche for Cleopatra (from Wikipedia)

One way the Egyptians used specifically for names is called a cartouche: they enclosed the sequence of symbols that represented a name in an oval-like box, like the one shown for Cleopatra. This was one of the first keys to unlocking the language as the name of pharaoh Ptolemy appeared several times in the Greek of the Rosetta Stone. Once someone had the idea that the cartouches might be names, the symbols used to spell out Ptolemy a letter at a time could be guessed at.

The Egyptian hieroglyph for aleph (an egyptian eagle)
The Egyptian hieroglyph for aleph

Putting things in boxes works for a pictorial language, but it isn’t so convenient as a more general way of indicating different uses of particular symbols or sequences of them. The Ancient Egyptians therefore had a much simpler way too. The normal reading of a symbol was as a sound. A symbol that was to be treated as a picture of the word it represented was followed by a line (so despite all the assumptions of the translators and the general perception of them, a hieroglyph as picture is treated as the exception not the norm!)

The Egyptian hieroglyph for an Egyptian eagle (an Egyptian eagle followed by a line).
The Egyptian hieroglyph for the Egyptian Eagle

For example, the hieroglyph that is a picture of the Egyptian eagle stands for a single consonant sound, aleph. We would pronounce it ‘ah’ and it can be seen in the cartouche for Cleopatra that sounds out her name. However, add the line after the picture of the eagle (as shown) and it just means what it looks like: the Egyptian eagle.

Cartouches actually included the line at the end too indicating in itself their special meaning, as can be seen on the Cleopatra cartouche above

The Egyptian line hieroglyph is what we would now call an escape character: its purpose is to say that the symbol it is paired with is not treated normally, but in a special way.

Computer Scientists use escape characters in a variety of ways in programming languages as well as in scripting languages like HTML. Different languages use a different symbol as the escape character, though \ is popular (and very reminiscent of the Egyptian line!). One place escapes are used is to represent special characters in strings (sequences of characters like words or sentences) so they can be manipulated or printed. If I want my program to print a word like “not” then I must pass an appropriate string to the print command. I just put the three characters in quotation marks to show I mean the characters n then o then t. Simple.

However, the string “\no\t” does not similarly mean five characters \, n, o, \ and t. It still represents three characters, but this time \n, o and \t. \ is an escape character saying that the n and the t symbols that follow it are not really representing the n or t characters but instead stand for a newline (\n : which jumps to the next line) and a tab character (\t : which adds some space). “\no\t” therefore means newline o tab.

This begs the question what if you actually want to print a \ character! If you try to use it as it is, it just turns what comes after it into something else and disappears. The solution is simple. You escape it by preceding it with a \. \\ means a single \ character! So “n\\t” means n followed by an actual \ character followed by a t. The normal meaning of \ is to escape what follows. Its special meaning when it is escaped is just to be a normal character! Other characters’s meanings are inverted like this too, where the more natural meaning is the one you only get with an escape character. For example what if you want a program to print a quotation so use quotation marks. But quotation marks are used to show you are starting and ending a String. They already have another meaning. So if you want a string consisting of the five characters “, n, o, t and ” you might try to write “”not”” but that doesn’t work as the initial “” already makes a string, just one with no characters in it. The string has ended before you got to the n. Escape characters to the rescue. You need ” to mean something other than its “normal” meeting of starting or ending a string so just escape it inside the string and write “\”not\””.

Once you get used to it, escaping characters is actually very simple, but is easy to find confusing when first learning to program. It is not surprising those trying to decipher hieroglyphs struggled so much as escapes were only one of the problems they had to contend with.


More on …

Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.

Christopher Strachey and the secret of being a Wizard Debugger

by Paul Curzon, Queen Mary University of London

(from the archive)

Code with BUG cross hairs over one area and rest faded out
Image by Pexels from Pixabay 

Elite computer programmers are often called wizards, and one of the first wizards was Christopher Strachey, who went on to be a pioneer of the development of programming languages. The first program he wrote was an Artificial Intelligence program to play draughts: more complicated (and fun) than the programs others were writing at the time. He was not only renowned as a programmer, but also as being amazingly good at debugging – getting them actually to work. On a visit to Alan Turing in Manchester he was given the chance to get his programs working on the Ferranti Mark I computer there. He did so very quickly working through the night to get them working, and even making one play God Save the King on the hooter. He immediately gained a reputation as being a “perfect” programmer. So what was his secret?

No-one writes complex code right first time, and programming teams spend more time testing programs than writing them in the first place to try and find all the bugs – possibly obscure situations where the program doesn’t do what the person wanted. A big part of the skill of programming is to be able to think logically and so be able to work through what the program actually does do, not just what it should do.

So what was Strachey’s secret that made him so good at debugging? When someone came to him with code that didn’t work, but they couldn’t work out why, he would start by asking them to explain how the program worked to him. As they talked, he would sit back, close his eyes and think about something completely different: a Beethoven symphony perhaps. Was this some secret way to tap his own creativity? Well no. What would happen is as the person explained the program to him they would invariable stop at some point and say something like: “Oh. Wait a minute…” and realise their mistake. By getting them to explain he was making them work through in detail how the program worked. Strachey’s reputation would be enhanced yet again.

There is a lesson here for anyone wishing to be a good programmer. Spending time explaining your program is also a good way to find problems. It is also an important part of learning to program, and ultimately becoming a wizard.


More on …

Related Magazines …


This blog is funded by UKRI, through grant EP/W033615/1.

Knitters and Coders: separated at birth?

People often say that computers are all around us, but you could still escape your phone and iPod and go out to the park, far away from the nearest circuit board if you wanted to. It’s a lot more difficult to get away from the clutches of computation itself though. For one thing, you’d have to leave your clothes at home. Queen Mary Electronic Engineer Karen Shoop tells us about the code hidden in knitting, and what might happen when computers learn to read it.

Boy with wool hat and jumper on snowy day

If you’re wearing something knitted look closely at it (if it’s a sunny day then put this article away till it gets colder). Notice how the two sides don’t look the same: some parts look like a raised ‘v’ and others like a wave pattern. These are made by the two knitting stitches: knit and purl. With knit you stick the needle through and then behind the knitting; with purl you stick the needle in the other direction, starting behind the knitting and then pointing at the knitter. Expert knitters know that there’s more to knitting than just these two stitches, but we’ll stick to knit and purl. As these stitches are combined, the wool is transformed from a series of waves or ‘v’s into a range of patterns: stretchy stripes (ribs), raised speckles (moss), knots and ropes (cable). It all depends on the number of purls and knits, how they are placed next to each other and how often things are repeated.

Knitters get very proficient at reading knitting patterns, which are just varying combinations of k (knits) and p (purls). So the simplest pattern of all, knitting a square, would look something like:

’30k (30 knit stitches), finish the line, then repeat this 20 times’.

A rib would look like: ‘5k, 5p, then repeat this [a certain number of times], then repeat the line [another number of times]’

To a computer scientist or electronic engineer all this looks rather like computer code or, to be precise, like the way of describing a pattern as a computer program.

How your jumper is like coding

So look again at your knitted hat/jumper/cardi and follow the pattern, seeing how it changes horizontally and vertically. Just as knitters give instructions for this in their knitting pattern, coders do the same when writing computer programs. Specifically programmers use things called regular expressions. They are just a standard way to describe patterns. For example a regular expression might be used to describe what an email address should look like (specifying rules such as that it has one ‘@’ character in the middle of other characters, no full-stops/periods immediately before the @ and so on), what a phone number looks like (digits/numbers, no letters, possibly brackets or hyphens) and now what a knitting pattern looks like (lots of ks and ps). Regular expressions use a special notation to precisely describe what must be included, what might possibly be included, what cannot be, and how many times things should be repeated. If you were going to teach a computer how to read knitting patterns, a regular expression would be just what you need.

Knitting a regular expression

Let’s look at how to write a knitting pattern as a regular expression. Let’s take moss or seed stitch as our example. It repeats a “knit one purl one” pattern for one line. The next line then repeats a “purl one knit one” pattern, so that every knit stitch has a purl beneath it and vice versa. These two lines are repeated for as long as is necessary. How might we write that both concisely and precisely so there is no room for doubt?

In knitting notation (assuming an even number of stitches) it looks like: Row 1: *k1, p1; rep from * Rows 2: *p1, k1; rep from * or Row 1: (K1, P1) rep to end Row 2: (P1, K1) rep to end Repeat these 2 rows for length desired.

piles of woollen clothes

All this is fine … if it’s being read by a human, but to write experimental knitting software the knitting notation we have to use a notation a computer can easily follow: regular expressions fit the bill. Computers do not understand the words we used in our explanation above: words like ‘row’, ‘repeat’, ‘rep’, ‘to’, ‘from’, ‘end’, ‘length’ and ‘desired’, for example. We could either write a program that makes sense of what it all means for the computer, or we could just write knitting patterns for computers in a language they can already do something with: regular expressions. If we wanted to convert from human knitting patterns to regular expressions we would then write a program called a compiler (see Smart translation) that just did the translation.

In a regular expression to give a series of actions we just name them. So kp is the regular expression for one knit stitch followed immediately by one purl. The knitting pattern would then say repeat or rep. In a regular expression we group actions that need to be repeated inside curved brackets, resulting in (kp). To say how many times we need to repeat, curly brackets are used, so kp repeated 10 times looks like this: (kp){10}.

Since the word ‘row’ is not a standard coding word we then use a special character, written, \n, to indicate that a new line (=row) has to start. The full regular expression for the row is then (kp){10}\n. Since the first line was made of kps the following line must be pks, or (pk){10}\n

These two lines have to be repeated a certain number of times themselves, say 20, so they are in turn wrapped up in yet more brackets, producing: ((kp){10}\n(pk){10}\n){20}.

If we want to provide a more general pattern, not fixing the number of kps in a row or the number of rows, the 10 and 20 can be replaced with what are called variables – x and y. They can each stand for any number, so the final regular expression is:

((kp){x}\n(pk){x}\n){y}

How would you describe a rib as a regular expression (remember, that’s the pattern that looks like stretchy stripes)? The regular expression would be ((kp){x}\n){y}.

Regular expressions end up saying exactly the same thing as the standard knitting patterns, but more precisely so that they cannot be misunderstood. Describing knitting patterns in computer code is only the start, though. We can use this to write code that makes new patterns, to find established ones or to alter patterns, like you’d need to do if you were using thicker wool, for example. An undergraduate student at Queen Mary, Hailun Li, who likes knitting, used her knowledge to write an experimental knitting application that lets users enter their own combination of ps and ks and find out what their pattern looks like. She took her hobby and saw how it related to computing.

Look at your woolly jumper again…it’s full of computation!

– Karen Shoop, Queen Mary University of London, Summer 2014

The ping pong vaccination programming challenge

Vaccination programmes work best when the majority of the population are vaccinated. One way scientists simulate the effects of disease and vaccination programmes is by using computer simulations. But what is a computer simulation?

Lots of multi-coloured ping pong balls

You can visualise what a simulation is with ping pong balls bouncing around a crowd. Imagine having a large room full of people. A virus is represented by a ping pong ball, bouncing from person to person, infecting each person it touches. Each person who is hit by a ping pong ball and not already infected becomes infected. That means they toss that ping pong ball back into the crowd to infect more people, but they also toss an extra one too (and then they sit down: dead). Start with a few ping pong balls. Quickly the virus spreads everywhere and lots of people sit down (die). You have run a physical simulation of how a virus spreads!

Now start again but ‘vaccinate’ 80 per cent of the people first: give them a baseball cap to wear to show who is who. If those people get a ping pong ball, they just destroy it: they infect noone else. Start with the same number of ping pong balls. This time, the virus quickly dies out and only a few people sit down (die). Not only are the vaccinated people protected but they protect many of the un-protected people too who might have died.

Now (if you can program) you can write a program to do the same thing, and so simulate and explore the spread of infection, which is easier perhaps than getting a thousand people to chuck ping pong balls about. Create a grid (an array) of 1000 cells. Each represents a person. They can be infected or not. They can also be vaccinated or not. Start with five random cells (so people marked as infected). Run a series of rounds. After each round, a newly infected cell randomly chooses two others to infect. If not infected already and not vaccinated, then they become newly infected. If already infected or vaccinated, they do not pass the infection on.

You can run lots of different experiments with different conditions. For example, experiment with different proportions of people infected at the start or explore what percentage of people need to be vaccinated for the virus to quickly die out. Is 50 per cent enough? You could also change how many people one person infects, or for how long a person can infect others before dying. Perhaps they each keep causing new infections for three rounds before stopping instead of only one. In what situations does the virus infect lots of people and when does it die out quickly?

What you are doing here is computer modelling or simulating the effects of the virus in different scenarios, and that is essentially how computer scientists make the predictions that governments use to make decisions about lockdowns and mask wearing, if they are “following the science”. Of course, such models are only as good as the data that goes into them, such as how many other people does each person infect. In reality, this is data provided by surveys, experimental studies, and so on.

– Paul Curzon, Queen Mary University of London, Spring 2021

Download Issue 27 of the cs4fn magazine on Smart Health here.

This post and issue 27 of the cs4fn magazine have been funded by EPSRC as part of the PAMBAYESIAN project.

A recipe for programming

By Paul Curzon, Queen Mary University of London

How is a computer program like a recipe? Let’s see, and as a bonus, here’s how to cook a quick pasta dish (for International Hummus Day).

Virtual Table Setting

Programmers are the master chefs of the computing world – except the recipes they invent don’t just give us a nice meal, they change the way we live.

Programs are very similar to recipes. They both give instructions that, if followed, achieve something. There is a difference between them, though, and it has to do with language. When chefs invent recipes they write them out in human languages like English. Programmers write programs in special languages. Why’s that? It’s all about being precise enough to be sure exactly the same thing happens every time. Recipes are often ambiguous which is why when I follow one it sometimes goes wrong. Programs tie down every last detail.

Let’s apply some ideas from programming languages to making meals. One of my favourite recipes is a hummus-based pasta dish (see box) so we’ll use that.

Structure it!

The first thing to notice about a recipe book is there is a clear structure. Each recipe is obviously separate from the others. Each has a title and a brief description of how it might be used. Each has an ingredients list and then a series of steps to follow. Programs follow a similar structure.

Cookery books use page layout to show their structure. Programmers use language: grammar, symbols and keywords. A keyword is a word that means something special. Once you have decided a word is a keyword you only ever use it for that purpose.

Let’s invent a keyword RECIPE to mean we’re starting a new recipe. The only time that word will appear in our recipes is to start a new recipe. What follows it will always be the name of the recipe. We will also need to know when the name ends. To make that clear we will use a special symbol made up of open and close brackets ().

We also want to be absolutely sure what is part of this recipe and what isn’t. We will use curly brackets: everything between the brackets is part of the named recipe.

RECIPE Hummus and Tomato Pasta ()
{

}

No comment?

Spaghetti that looks like optical fibre

Recipes usually include a brief description that isn’t part of the actual instructions. It is just there to help someone understand when you might use the recipe. Programs have descriptions like this too. Programmers call them ‘comments’. Remove the comments and the recipe will still work. We need a clear way to show when a comment starts and ends. We will start them with a special symbol ‘/*’ and end them with ‘*/’.

RECIPE Hummus and Tomato Pasta ()
{
/* Serves 2
This is a very quick 20-minute after work dish.
*/

}

Variable storage

What comes next in a recipe is usually a list of ingredients. The idea is to list everything you need so you can have it all ready before you start. I often have a problem following recipes, though, as they don’t list absolutely everything. Mid- recipe I might suddenly find I need a frying pan…when mine is crusted with burnt cheese sauce from last night! To avoid that, let’s list all the pans we need too. For our recipe we need a frying pan and a saucepan.

Something used to store things (like pans do) in a program is called a ‘variable’. Program variables hold things like numbers. The equivalent of the ingredients list ‘declares’ the variables. Declarations give each variable a unique name used to refer to it and also give each a ‘type’ – is it a saucepan or a frying pan we need? To be clear about when a declaration ends we add in some punctuation. Programming languages tend to use a semicolon for that – it’s a bit like a full stop in English.

Saucepan pan1;
Fryingpan pan2;

This says that in the rest of the recipe when we say pan1 (the variable name) we mean a particular pan: a saucepan (its type). When we say pan2 we mean a particular frying pan.

New assignment

Assignment does NOT move things around, it makes new copies

We will make a distinction between things to hold stuff, like pans (variables) and the actual ingredients that go in them: ‘values’. We will also follow the TV chefs and start by setting out all the ingredients in little dishes at the start so they are at hand – and make that part of the instructions.

We will need to declare a dish to hold each ingredient, giving its type and giving the dish a name. At the same time we will say what should be put in it before the recipe proper is started. We will use an ‘=’ symbol to mean put something in a variable (i.e., dish or pan). In programs, this action of putting something in a variable is called ‘assignment’. So, for example, we will declare that we need a dish to hold the hummus (called hummusDish). We assign 200g of hummus to it.

Dish hummusDish = 200g hummus;

We are now ready for the recipe proper. We can use assignment as a precise way of moving things from one place to another too. So if we say, for example:

pan2 = oilDish;

We mean empty the contents of the dish of oil into the frying pan. Programs are slightly different here, as when they do an assignment they don’t move things from one place to the other, they copy it. That would be like having a dish that automatically refilled itself whenever it was emptied.

Often we want to add to whatever is already in a pan. Programmers leave nothing to doubt and say explicitly that is what they mean:

pan2 = pan2 + onionDish;

This tells us to mix what is in the onion dish with what is in the frying pan, and then leave the result in the frying pan. We will use the + symbol to mean add together and stir.

Methods in my madness

So far all we’ve done is put ingredients in things and copied them around. To make a meal we need to do various basic cooking things like heat a pan or drain a pan. Rather than spell out every step of how you do that in every recipe, we will use a short hand. We create mini-recipes that say how to do it and just refer to them by name. They are often called ‘methods’ by programmers. Each is written out just like our recipe. In fact to a programmer our recipe is a method too. When we want to use it we just give its name followed by any extra information needed. For example to heat a pan, we need to know which pan, how high a heat and for how long. We write, for example:

Heat (pan1, medium, 12 minutes);

This format helps make sure we don’t miss something (like the time for example). We need similar methods for draining a pan and serving the meal. We won’t give the actual instructions here. In a full program they would be written down step-by- step too and not left to chance.

Time to do it right

We have come up with a language for recipes similar to the ones used for programming. We’ve used symbols, keywords and very precise punctuation – the language’s ‘syntax’ – to help us be precise. On its own that’s not enough – each part of the language has to have a very clear meaning too – the language’s ‘semantics’. Together they make sure in following a recipe we know exactly what each step involves. There is then less scope for a cook (or computer) to get it wrong. Computers, of course, have no intelligence of their own. All they can do is exactly follow the instructions someone wrote for them (a bit like me cooking).