Dressing it up

Why it might be good for robots to wear clothes

by Peter W McOwan and the CS4FN team, Queen Mary University of London

Updated from the archive

(Robot) dummies in different clothes standing in a line up a slope
Image by Peter Toporowski from Pixabay 

Even though most robots still walk around naked, the Swedish Institute of Computer Science (SICS) in Stockholm explored how to produce fashion conscious robots.

The applied computer scientists there were looking for ways to make the robots of today easier for us to get along with. As part of the LIREC project to build the first robot friends for humans they examined how our views of simple robots change when we can clothe and customise them. Does this make the robots more believable? Do people want to interact more with a fashionable robot?

How do you want it?

These days most electronic gadgets allow the human user to customise them. For example, on a phone you can change the background wallpaper or colour scheme, the ringtone or how the menus work. The ability of the owner to change the so-called ‘look and feel’ of software is called end-user programming. It’s essentially up to you how your phone looks and what it does.

Dinosaurs waking and sleeping

The Swedish team began by taking current off-the-shelf robots and adding dress-up elements to them. Enter Pleo, a toy dinosaur ‘pet’ able to learn as you play with it. Now add in that fashion twist. What happens when you can play dress up with the dinosaur? Pleo’s costumes change its behaviour, kind of like what happens when you customise your phone. For example, if you give Pleo a special watchdog necklace the robot remains active and ‘on guard’. Change the costume from necklace to pyjamas, and the robot slowly switches into ‘sleep’ mode. The costumes or accessories you choose communicate electronically with the robot’s program, and its behaviour follows suit in a way you can decide. The team explored whether this changed the way people played with them.

Clean sweeps

In another experiment the researchers played dress up with a robot vacuum cleaner. The cleaner rolls around the house sweeping the floor, and had already proven a hit with many consumers. It bleeps happily as its on-board computer works out the best path to bust your carpet dust. The SICS team gave the vacuum a special series of stick-on patches, which could add to its basic programming. They found that choosing the right patch could change the way the humans perceive the robot’s actions. Different patches can make humans think the robot is curious, aggressive or nervous. There’s even a shyness patch that makes the robot hide under the sofa.

What’s real?

If humans are to live in a world populated by robots there to help them, the robots need to be able to play by our rules. Humans have whole parts of their brains given over to predicting how other humans will react. For example, we can empathise with others because we know that other beings have thoughts like us, and we can imagine what they think. This often spills over into anthropomorphism, where we give human characteristics to non-human animal or non-living things. Classic examples are where people believe their car has a particular personality, or think their computer is being deliberately annoying – they are just machines but our brains tend to attach motives to the behaviours we see.

Real-er robots?

Robots can produce very complex behaviours depending on the situations they are in and the ways we have interacted with them, which creates the illusion that they have some sort of ‘personality’ or motives in the way they are acting. This can help robots seem more natural and able to fit in with the social world around us. It can also improve the ways they provide us with assistance because they seem that bit more believable. Projects like the SICS’s ‘actDresses’ one help us by providing new ways that human users can customise the actions of their robots in a very natural way, in their case by getting the robots to dress for the part.


More on …

Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.

The naked robot

by Paul Curzon, Queen Mary University of London

From the archive

A naked robot holding a flower
Image by bamenny from Pixabay 

Why are so many film robots naked? We take it for granted that robots don’t wear clothes, and why should they?

They are machines, not humans, after all. On the other hand, the quest to create artificial intelligence involves trying to create machines that share the special ingredients of humanity. One of the things that is certainly special about humans in comparison to other animals is the way we like to clothe and decorate our bodies. Perhaps we should think some more about why we do it but the robots don’t!

Shame or showoff?

The creation story in the Christian Bible suggests humans were thrown out of the Garden of Eden when Adam and Eve felt the need to cover up – when they developed shame. Humans usually wear more than just the bare minimum though, so wearing clothing can’t be all about shame. Nor is it just about practicalities like keeping warm. Turn up at an interview covering your body with the wrong sort of clothes and you won’t get the job. Go to a fancy dress party in the clothes that got you the job and you will probably feel really uncomfortable the moment you see that everyone else is wearing costumes. Clothes are about decorating our bodies as much as covering them.

Our urge to decorate our bodies certainly seems to be a deeply rooted part of what makes us human. After all, anthropologists consider finds like ancient beads as the earliest indications of humanity evolving from apehood. It is taken as evidence that there really was someone ‘in there’ back then. Body painting is used as another sign of our emerging humanity. We still paint our bodies millennia later too. Don’t think we’re only talking about children getting their faces painted – grownups do it too, as the vast make-up industry and the popularity of tattoos show. We put shiny metal and stones around our necks and on our hands too.

The fashion urge

Whatever is going on in our heads, clearly the robots are missing something. Even in the movies the intelligent ones rarely feel the need to decorate their bodies. R2D2? C3PO? Wall-E? The exceptions are the ones created specifically to pass themselves off as human like in Blade Runner.

You can of course easily program a robot to ‘want’ to decorate itself, or to refuse to leave its bedroom unless it has managed to drape some cloth over its body and shiny wire round its neck, but if it was just following a programmed rule would that be the same as when a human wears clothes? Would it be evidence of ‘someone in there’? Presumably not!

We do it because of an inner need to conform more than an inner need to wear a particular thing. That is what fashion is really all about. Perhaps programming an urge to copy others would be a start. In Wall-E, the robot shows early signs of this as he tries to copy what he sees the humans doing in the old films he watches. At one point he even uses a hubcap as a prop hat for a dance. Human decoration may have started as a part of rituals too.

Where to now?

Is this need to decorate our bodies something special, something linked to what makes us human? Should we be working on what might lead to robots doing something similar of their own accord? When archaeologists are hunting through the rubble in thousands of years’ time, will there be something other than beads that would confirm their robot equivalent to self-awareness? If robots do start to decorate and cover up their bodies because they want to rather than because it was what some God-like programmer coded them to do, surely something special will have happened. Perhaps that will be the point when the machines have to leave their Garden of Eden too.


More on …

Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.

Shirts that keep score

by the CS4FN team, Queen Mary University of London

From the archive

Basketball player with shirt in mouth
Image by 愚木混株 Cdd20 from Pixabay 

When you are watching a sport in person, a quick glance at the scoreboard should tell you everything you need to know about what’s going on. But why not try to put that information right in the action? How much better would it be if all the players’ shirts could display not just the score, but how well each individual is doing?

Light up, light up

An Australian research group from the University of Sydney has made it happen. They rigged up two basketball teams’ shirts with displays that showed instant information as they played one another. The players (and everyone else watching the game) could see information that usually stays hidden, like how many fouls and points each player had. The displays were simple coloured bands in different places around the shirt, all connected up with tiny wires sewn into the shirts like thread. For every point a player got, for example, one of the bands on the player’s waist would light up. Each foul a player got made a shoulder band light up. There was also a light on players’ backs reserved for the leading team. Take the lead and all your team’s lights turned on, but lose it again and they went dark with defeat.

Sweaty but safe

All those displays were controlled by an on-board computer that each player harnessed to his or her body. That computer, in turn, was wirelessly connected to a central computer that kept track of winners, losers, fouls and baskets. The designers had to be careful about certain things, though. In case a player fell over and crushed their computer, the units were designed with ‘weak spots’ on purpose so they would detach rather than crumple underneath the player. And, since no one wants to get electrocuted while playing their favourite sport, the designers protected all the gear against moisture and sweat.

Keeping your head in the game

In the end, it was the audience at the game who got the most out of the system. They were able to track the players more closely than they normally would, and it helped those in the crowd who didn’t know much about basketball to understand what was going on. The players themselves had less time to think about what was on everyone’s clothes, as they were busy playing the game, but the system did help them a few times. One player said that she could see when her teammate had a high score, “and it made me want to pass to her more, as she had a ‘hot hand'”. Another said that it was easier to tell when the clock was running down, so she knew when to play harder. Plus, just seeing points on their shirts gave the players more confidence. There’s so much information available to you when you watch a game on television that, in a weird way, actually being in the stadium could make you less informed. Maybe in the future, the fans in the stands will see everything the TV audience does as well, when the players wear all their statistics on their shirts! We’ll see what the sponsors think of that…


More on …

Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.

Full metal jacket: the fashion of Iron Man

by Peter W McOwan and Paul Curzon, Queen Mary University of London

Spoiler Alert

Industrialist Tony Stark always dresses for the occasion, even when that particular occasion happens to be a fight with the powers of evil. His clothes are driven by computer science: the ultimate in wearable computing.

In the Iron Man comic and movie franchise Anthony Edward Stark, Tony to his friends, becomes his crime fighting alter ego by donning his high tech suit. The character was created by Marvel comic legend Stan Lee and first hit the pages in 1963. The back story tells how industrial armaments engineer and international playboy Stark is kidnapped and forced to work to develop new forms of weapons, but instead manages to escape by building a flying armoured suit.

Though the escape is successful Stark suffers a major heart injury during the kidnap ordeal, becoming dependant on technology to keep him alive. The experience forces him to reconsider his life, and the crime avenging Iron Man is born. Lee’s ‘businessman superhero’ has proved extremely popular and in recent years the Iron Man movies, starring Robert Downey Jr, have been box office hits. But as Tony himself would be the first to admit, there is more than a little computer science supporting Iron Man’s superhero standing.

Suits you

The Iron Man suit is an example of a powered exoskeleton. The technology surrounding the wearer amplifies the movement of the body, a little like a wearable robot. This area of research is often called ‘human performance augmentation’ and there are a number of organisations interested in it, including universities and, unsurprisingly, defence companies like Stark Industries. Their researchers are building real exoskeletons which have powers uncannily like those of the Iron Man suit.

To make the exoskeleton work the technology needs to be able to accurately read the exact movements of the wearer, then have the robot components duplicate them almost instantly. Creating this fluid mechanical shadow means the exoskeleton needs to contain massive computing power, able to read the forces being applied and convert them into signals to control the robot servo motors without any delay. Slow computing would cause mechanical drag for the wearer, who would feel like they were wading through treacle. Not a good idea when you’re trying to save the world.

Pump it up

Humans move by using their muscles in what are called antagonistic pairs. There are always two muscles on either side of the joint that pull the limb in different directions. For example, in your upper arm there are the muscles called the biceps and the triceps. Contracting the biceps muscle bends your elbow up, and contracting your triceps straightens your elbow back. It’s a clever way to control biological movement using just a single type of shortening muscle tissue rather than needing one kind that shortens and another that lengthens.

In an exoskeleton, the robot actuators (the things that do the moving) take the place of the muscles, and we can build these to move however we want, but as the robot’s movements need to shadow the person’s movements inside, the computer needs to understand how humans move. As the human bends their elbow to lift up an object, sensors in the exoskeleton measure the forces applied, and the onboard computer calculates how to move the exoskeleton to minimise the resulting strain on the person’s hand. In strength amplifying exoskeletons the actuators are high pressure hydraulic pistons, meaning that the human operators can lift considerable weight. The hydraulics support the load, the humans movements provide the control.

I knew you were going to do that

It is important that the human user doesn’t need to expend any effort in moving the exoskeleton; people get tired very easily if they have to counteract even a small but continual force. To allow this to happen the computer system must ensure that all the sensors read zero force whenever possible. That way the robot does the work and the human is just moving inside the frame. The sensors can take thousands of readings per second from all over the exoskeleton: arms, legs, back and so on.

This information is used to predict what the user is trying to do. For example, when you are lifting a weight the computer begins by calculating where all the various exoskeleton ‘muscles’ need to be to mirror your movements. Then the robot arm is instructed to grab the weight before the user exerts any significant force, so you get no strain but a lot of gain.

Flight suit?

Exoskeleton systems exist already. Soldiers can march further with heavy packs by having an exoskeleton provide some extra mechanical support that mimics their movements. There are also medical applications that help paralysed patients walk again. Sadly, current exoskeletons still don’t have the ability to let you run faster or do other complex activities like fly.

Flying is another area where the real trick is in the computer programming. Iron Man’s suit is covered in smart ‘control surfaces’ that move under computer control to allow him to manoeuvre at speed. Tony Stark controls his suit through a heads-up display and voice control in his helmet, technology that at least we do have today. Could we have fully functional Iron Man suits in the future? It’s probably just a matter of time, technology and computer science (and visionary multi-millionaire industrialists too).


More on …

Related Magazines …


This blog is funded through EPSRC grant EP/W033615/1.