Microwave Racing – making everyday devices easier to use

An image of a microwave (cartoon), all in grey with dials and a button.

Microwave Racing

by Dom Furniss and Paul Curzon, 2015

When you go shopping for a new gadget like a smartphone or perhaps a microwave are you mostly wowed by its sleek looks, do you drool over its long list of extra functionality? Do you then not use those extra functions because you don’t know how? Rather than just drooling, why not go to the races to help find a device you will actually use, because it is easy to use!

An image of a microwave (cartoon), all in grey with dials and a button.
Microwave image by Paul from Pixabay

On your marks, get set… microwave

Take an everyday gadget like a microwave. They have been around a while, so manufacturers have had a long time to improve their designs and so make them easy to use. You wouldn’t expect there to be problems would you! There are lots of ways a gadget can be harder to use than necessary – more button presses maybe, lots of menus to get lost in, more special key sequences to forget, easy opportunities to make mistakes, no obvious feedback to tell you what it’s doing… Just trying to do simple things with each alternative is one way to check out how easy they are to use. How simple is it to cook some peas with your microwave? Could it be even simpler? Dom Furniss, a researcher at UCL decided to video some microwave racing as a fun way to find out…

Everyday devices still cause people problems even when they are trying to do really simple things. What is clear from Microwave racing is that some really are easier to use than others. Does it matter? Perhaps not if it’s just an odd minute wasted here or there cooking dinner or if actually, despite your drooling in the shop, you don’t really care that you never use any of those ‘advanced’ features because you can never remember how to.

 

Better design helps avoid mistakes

Would it matter to you more though if the device in question was a medical device that keeps a patient alive, but where a mistake could kill? There are lots of such gadgets: infusion pumps for example. They are the machines you are hook up to in a hospital via tubes. They pump life-saving drugs, nutrient rich solutions or extra fluids to keep you hydrated directly into your body. If the nurse makes a mistake setting the rate or volume then it could make you worse rather than better. Surely then you want the device to help the nurse to get it right.

Making safer medical devices is what the research project, called CHI+MED, that Dom works* on is actually about. While the consequences are completely different, the core task in setting an infusion pump is actually very similar to setting a microwave – “set a number for the volume of drug and another for the rate to infuse it and hit start” versus “set a number for the power and another for the cooking time, then hit start”. The same types of design solutions (both good and bad) crop up in both cases. Nurses have to set such gadgets day in day out. In an intensive care unit, they will be using several at a time with each patient. Do you really want to waste lots of minutes of such a nurse’s time day in, day out? Do you want a nurse to easily be able to make mistakes in doing so?

 

User feedback

What the microwave racing video shows is that the designers of gadgets can make them trivially simple to use. They can also make them very hard to use if they focus more on the looks and functions of the thing than ease of use. Manufacturers of devices are only likely to take ease of use seriously if the people doing the buying make it clear that we care. Mostly we give the impression that we want features so that is what we get. Microwave racing may not be the best way to do it (follow the links below to explore more about actual ways professionals evaluate devices), but next time you are out looking for a new gadget check how easy it is to use before you buy … especially if the gadget is an infusion pump and you happen to be the person placing orders for a hospital!

 


*CHI+MED finished in 2015 and this issue of CS4FN was one of the project’s outputs.

The original version of this article was originally published on the CS4FN website and on page 16 of Issue 17 of CS4FN, “Machines making medicine safer“, which is free to download as a PDF, along with all of our other free material, here: https://cs4fndownloads.wordpress.com/

 

 

This blog post is funded through EPSRC grant EP/W033615/1: Paul Curzon is
one of the EPSRC’s ICT Public Engagement Champions.

 

 

Playing Bridge, but not as we know it – the sound of the Human Harp

Playing Bridge, but not as we know it
by Paul Curzon, Queen Mary of London

Looking upwards at the curve of a bright white suspension bridge gleaming in the sunshine with a blue sky behind it
               Elizabeth Quay Bridge in Australia

Clifton, Forth and Brooklyn are all famous suspension bridges where, through a feat of engineering greatness, the roadway hangs from cables slung from sturdy towers. The Human Harp project created by Di Mainstone, Artist in Residence at Queen Mary, involves attaching digital sensors to bridge cables attached by lines to the performer’s clothing. As the bridge vibrates to traffic and people, and the performer moves, the angle and length of the lines are measured and different sounds produced. In effect human and bridge become one augmented instrument, making music mutually. Find out more at www.humanharp.org

 

This article was originally published on CS4FN and a copy can also be found (on page 17) in Issue 17 of CS4FN, Machines making medicine safer, which you can download as a PDF.

All of our free material can be downloaded here: https://cs4fndownloads.wordpress.com

 

The red sock of doom – trying to catch mistakes before they happen

Washing machine mistake

A red sock in with your white clothes wash – guess what happened next? What can you do to prevent it from happening again? Why should a computer scientist care? It turns out that red socks have something to teach us about medical gadgets.

How can we stop red socks from ever turning our clothes pink again? We need a strategy. Here are some possibilities.

  • Don’t wear red socks.
  • Take a ‘how to wash your clothes’ course.
  • Never make mistakes.
  • Get used to pink clothes.

Let’s look at them in turn – will they work?

Don’t wear red socks: That might help but it’s not much use if you like red socks or if you need them to match your outfit. And how would it help when you wear purple, blue or green socks? Perhaps your clothes will just turn green instead.

Take a ‘how to wash your clothes’ course: Training might help: you’d certainly learn that a red sock and white clothes shouldn’t be mixed, you probably did know that anyway, though. It won’t stop you making a similar mistake again.

Never make misteaks: Just never leave a red sock in your white wash. If only! Unfortunately everyone makes mistakes – that’s why we have erasers on pencils and a delete key on computers – this idea just won’t work.

Get used to pink clothes: Maybe, but it’s not ideal. It might not be so great turning up to school in a pink shirt.

What if the problem’s more serious?

We can probably live with pink clothes, but what happens if a similar mistake is made at a hospital? Not socks, but medicines. We know everyone makes mistakes so how do we stop those mistakes from harming patients? Special machines are used in hospitals to pump medicine directly into a patient’s arm, for example, and a nurse needs to tell it how much medicine to give – if the dose is wrong the patient won’t get better, and might even get worse.

What have we learned from our red sock strategies? We can’t stop giving patients medicine and we don’t want to get used to mistakes so our first and fourth strategies won’t work. We can give nurses more training but everyone makes mistakes even when trained, so the third suggestion isn’t good enough either and it doesn’t stop someone else making the same mistake.

We need to stop thinking of mistakes as a problem that people make and instead as a problem that systems thinking can solve. That way we can find solutions that work for everyone. One possibility is to check whether changes to the device might make mistakes less likely in the first place.

Errors? Or arrows?

Most medical machines are controlled with a panel with numbered keys (a number keypad) like on mobile phones, or up and down arrows (an arrow keypad) like you sometimes get on alarm clocks. CHI+MED researchers have been asking questions like: which way is best for entering numbers quickly, but also which is best for entering numbers accurately? They’ve been running experiments where people use different keypads, are timed and their mistakes are recorded. The researchers also track where people are looking while they use the keypads. Another approach has been to create mathematical descriptions of the different keypads and then mathematically explore how bad different errors might be.

It turns out that if you can see the numbers on a keypad in front of you it’s very easy to type them in quickly, though not always correctly! You need to check the display to see if you have actually put in the right ones. Worse, mistakes that are made are often massive – ten times too much or more. The arrow keypads are a little slower to use but because people are already looking at the display (to see what numbers are appearing) they can help nurses be more accurate, not only are fewer mistakes made but those that are made tend to be smaller.

Smart machines help users

A medical device that actively helps users avoid mistakes helps everyone using it (and the patients it’s being used on!). Changing the interface to reduce errors isn’t the only solution though. Modern machines have ‘intelligent drug libraries’ that contain information about the medicines and what sort of doses are likely and safe. Someone might still mistakenly tell the machine to give too high a dose but now it can catch the error and ask the nurse to double-check. That’s like having a washing machine that can spot bright socks in a white wash and that refuses to switch on till it has been removed.

Building machines with a better ability to catch errors (remember, we all make mistakes) and helping users to recover from them easily is much more reliable than trying to get rid of all possible errors by training people. It’s not about avoiding red socks, or errors, but about putting better systems in place to make sure that we find them before we press that big ‘Start’ button.

This story was originally published here and is an article from CS4FN, a free computer science magazine from Queen Mary University of London which is sent to subscribing UK schools. To find out more please visit our About page.

Further reading / watching
You can find a copy of this article on pages 4 and 5 in issue 17 (Machines Making Medicine Safer) of CS4FN 17.

From 50s in this Paddington 2 clip you can see a ‘real world’ example of a red sock getting into the laundry.