Ant colonies are really good at adapting to changing situations: far better than humans. Sameena Shah wondered if Artificial Intelligence agents might do better by learning their intelligent behaviour from ants rather than us. She has suggested we could learn from the ants too.
Inspired by staring at ants adapting to new routes to food in the mud as a child, and then later as adult ants raided her milk powder, Sameena Shah studied for her PhD how a classic problem in computer science, that of finding the shortest path between points in a network, is solved by ant colonies. For ants this involves finding the shortest paths between food and the nest: something they are very good at. When foraging ants find a source of food they leave a pheromone (i.e., scent) trail as they return, a bit like Hansel and Gretel leaving a trail of breadcrumbs. Other ants follow existing trails to find the food as directly as possible, leaving their own trails as they do. Ants mostly follow the trail containing most pheromone, though not always. Because shorter paths are followed more quickly, there and back, they gain more pheromone than longer ones, so yet more ants follow them. This further reinforces the shortest trail as the one to follow.
There are lots of variations on the way ants actually behave. These variations are being explored by computer scientists as ways for AI agents to work together to solve problems. Sameena devised a new algorithm called EigenAnt to investigate such ant colony-based problem solving. If the above ant algorithm is used, then it turns out longer trails do not disappear even when a shorter path is found, particularly if it is found after a long delay. The original best path has a very strong trail so that it continues to be followed even after a new one is found. Computer-based algorithms add a step whereby all trails fade away at the same rate so that only ones still being followed stay around. This is better but still not perfect. Sameena’s EigenAnt algorithm instead removes pheromone trails selectively. Her software ants select paths using probabilities based on the strength of the trail. Any existing trail could be chosen but stronger trails are more likely to be. When a software ant chooses a trail, it adds its own pheromones but also removes some of the existing pheromone from the trail in a way that depends on the probability of the path being chosen in the first place. This mirrors what real ants do, as studies have shown they leave less pheromone on some trails than others.
Sameena proved mathematical properties of her algorithm as well as running simulations of it. This showed that EigenAnt does find the shortest path and never settles on something less than the best. Better still, it also adapts to changing situations. If a new shorter path arises then the software ants switch to it!
Sameena won the award for the best PhD in India
There are all sorts of computer science uses for this kind of algorithm, such as in ever-changing computer networks, where we always want to route data via the current quickest route. Sameena, however, has also suggested we humans could learn from this rather remarkable adaptability of ants. We are very bad at adapting to new situations, often getting stuck on poor solutions because of our initial biases. The more successful a particular life path has been for us the more likely we will keep following it, behaving in the same way, even when the situation changes. Sameena found this out when she took her dream job as a Hedge Fund manager. It didn’t go well. Since then, after changing tack, she has been phenomenally successful, first developing AIs for news providers, and then more recently for a bank. As she says: don’t worry if your current career path doesn’t lead to success, there are many other paths to follow. Be willing to adapt and you will likely find something better. We need to nurture lots of possible life paths, not just blindly focus on one.
Can computers lend a creative hand to the production of new magic tricks? That’s a question our team, led by Peter McOwan at Queen Mary, wrestled with.
The idea that computers can help with creative endeavours like music and drawing is nothing new – turn the radio on and the song you are listening to will have been produced with the help of a computer somewhere along the way, whether it’s a synthesiser sound, or the editing of the arrangement, and some music is created purely inside software. Researchers have been toiling away for years, trying to build computer systems that actually write the music too! Some of the compositions produced in this way are surprisingly good! Inspired by this work, we decided to explore whether computers could create magic.
The project to build creative software to help produce new magic tricks started with a magical jigsaw that could be rearranged in certain ways to make objects on its surface disappear. Pretty cool, but what part did the computer play? A jigsaw is made up of different pieces, each with four sides – the number of different ways all these pieces can be put together is very large; for a human to sit down and try out all the different configurations would take many hours (perhaps thousands, if not millions!). Whizzing through lots of different combinations is something a computer is very good at. When there are simply too many different combinations for even a computer to try out exhaustively, programmers have to take a different approach.
Evolve a jigsaw
A genetic algorithm is a program that mimics the biological process of natural selection. We used one to intelligently search through all the interesting combinations that the jigsaw might be made up from. A population of jigsaws is created, and is then ‘evolved’ via a process that evaluates how good each combination is in each generation, gradually weeding out the combinations that wouldn’t make good jigsaws. At the end of the process you hope to be left with a winner; a jigsaw that matches all the criteria that you are hoping for. In this particular case, we hoped to find a jigsaw that could be built in two different ways, but each with a different number of the same object in the picture, so that you could appear to make an object disappear and reappear again as you made and remade it. The idea is based on a very old trick popularised by Sam Lloyd, but our aim was to create a new version that a human couldn’t, realistically, have come up with, without a lot of free time on their hands!
To understand what role the computer played, we need to explore the Genetic Algorithm mechanism it used to find the best combinations. How did the computer know which combinations were good or bad? This is something creative humans are great at – generating ideas, and discarding the ones they don’t like in favour of ones they do. This creative process gradually leads to new works of art, be they music, painting, or magic tricks. We tackled this problem by first running some experiments with real people to find out what kind of things would make the jigsaw seem more ‘magical’ to a spectator. We also did experiments to find out what would influence a magician performing the trick. This information was then fed into the algorithm that searched for good jigsaw combinations, giving the computer a mechanism for evaluating the jigsaws, similar to the ones a human might use when trying to design a similar trick.
More tricks
We went on to use these computational techniques to create other new tricks, including a card trick, a mind reading trick on a mobile phone, and a trick that relies on images and words to predict a spectator’s thought processes. You can find out more including downloading the jigsaw at www.Qmagicworld.wordpress.com
Is it creative, though?
There is a lot of debate about whether this kind of ‘artificial intelligence’ software, is really creative in the way humans are, or in fact creative in any way at all. After all, how would the computer know what to look out for if the researchers hadn’t configured the algorithms in specific ways? Does a computer even understand the outputs that it creates? The fact is that these systems do produce novel things though – new music, new magic tricks – and sometimes in surprising and pleasing ways, previously not thought of.
Are they creative (and even intelligent)? Or are they just automatons bound by the imaginations of their creators? What do you think?
Having reliable news always matters to us: whether when disasters strike, of knowing for sure what our politicians really said, or just knowing what our favourite celebrity is really up to. Nowadays social networks like Twitter and Facebook are a place to find breaking news, though telling fact from fake-news is getting ever harder. How do you know where to look, and when you find something how do you know that juicy story isn’t just made up?
One way to be sure of stories is from trusted news-providers, like the BBC, but how do they make sure their stories are real. A lot of fake news is created by Artificial Intelligence bots and Artificial Intelligence is part of the solution to beat them.
Sameena Shah realised this early on. An expert in Artificial Intelligence, she led a research team at news provider Thomson Reuters. They provide trusted information for news organisations worldwide. To help ensure we all have fast, reliable news, Sameena’s team created an Artificial Intelligence program to automatically discover news from the mass of social networking information that is constantly being generated. It combines programs that process and understand language to work out the meaning of people’s posts – ‘natural language processing’ – with machine learning programs that look for patterns in all the data to work out what is really news and most importantly what is fake. She both thought up the idea for the system and led the development team. As it was able to automatically detect fake news, when news organisations were struggling with how much was being generated, it gave Thomson Reuters a head-start of several years over other trusted news companies.
Sameena’s ideas and work putting them in to practice has helped make sure we all know what’s really happening.
Paul Curzon, Queen Mary University of London (updated from the archive)
Follow the news and it is clear that the chatbots are about to take over journalism, novel writing, script writing, writing research papers, … just about all kinds of writing. So how about writing for the CS4FN magazine. Are they good enough yet? Are we about to lose our jobs? Jo asked ChatGPT to write a CS4FN article to find out.Read its efforts before reading on…
As editor I not only wrote but also vet articles and tweak them when necessary to fit the magazine style. So I’ve looked at ChatGPT’s offering as I would one coming from a person …
ChatGPT’s essay writing has been compared to that of a good but not brilliant student. Writing CS4FN articles is a task we have set students in the past: in part to give them experience over how you must write in different styles for different purposes. Different audience? Different writing. Only a small number come close to what I am after. They generally have one or more issues. A common problem when students write for CS4FN is sadly a lack of good grammar and punctuation throughout beyond just typos (basic but vital English skills seem to be severely lacking these days even with spell checking and grammar checking tools to help). Other common problems include a lack of structure, no hook at the start, over-formal writing so the wrong style, no real fun element at all and/or being devoid of stories about people, an obsession with a few subjects (like machine learning!) rather than finding something new to write about. They are also then often vanilla articles about that topic, just churning out looked-up facts rather than finding some new, interesting angle.
How did the chatbot do? It seems to have made most of the same mistakes. At least, chatGPT’s spelling and grammar are basically good so that is a start: it is a good primary school student then! Beyond that it has behaved like the weaker students do… and missed the point. It has actually just written a pretty bog standard factual article explaining the topic it chose, and of course given a free choice, it chose … Machine Learning! Fine, if it had a novel twist, but there are no interesting angles added to the topic to bring it alive. Nor did it describe the contributions of a person. In fact, no people are mentioned at all. It is also using a pretty formal style of writing (“In conclusion…”). Just like humans (especially academics) it also used too much jargon and didn’t even explain all the jargon it did use (even after being prompted to write for a younger audience). If I was editing I’d get rid of the formality and unexplained jargon for starters. Just like the students who can actually write but don’t yet get the subtleties, it hasn’t got the fact that it should have adapted its style, even when prompted.
It knows about structure and can construct an essay with a start, a middle and end as it has put in an introduction and a conclusion. What it hasn’t done though is add any kind of “grab”. There is nothing at the start to really capture the attention. There is no strange link, no intriguing question, no surprising statement, no interesting person…nothing to really grab you (though Jo saved it by adding to the start, the grab that she had asked an AI to write it). It hasn’t added any twist at the end, or included anything surprising. In fact, there is no fun element at all. Our articles can be serious rather than fun but then the grab has to be about the seriousness: linked to bad effects for society, for example.
ChatGPT has also written a very abstract essay. There is little in the way of context or concrete examples. It says, for example, “rules … couldn’t handle complex situations”. Give me an example of a complex situation so I know what you are talking about! There are no similes or metaphors to help explain. It throws in some application areas for context like game-playing and healthcare but doesn’t at all explain them (it doesn’t say what kind of breakthrough has been made to game playing, for example). In fact, it doesn’t seem to be writing in a “semantic wave” style that makes for good explanations at all. That is where you explain something by linking an abstract technical thing you are explaining, to some everyday context or concrete example, unpacking then repacking the concepts. Explaining machine learning? Then illustrate your points with an example such as how machine learning might use movies to predict your voting habits perhaps…and explain how the example does illustrate the abstract concepts such as pointing out the patterns it might spot.
There are several different kinds of CS4FN article. Overall, CS4FN is about public engagement with research. That gives us ways in to explain core computer science though (like what machine learning is). We try to make sure the reader learns something core, if by stealth, in the middle of longer articles. We also write about people and especially diversity, sometimes about careers or popular culture, or about the history of computation. So, context is central to our articles. Sometimes we write about general topics but always with some interesting link, or game or puzzle or … something. For a really, really good article that I instantly love, I am looking for some real creativity – something very different, whether that is an intriguing link, a new topic, or just a not very well known and surprising fact. ChatGPT did not do any of that at all.
Was ChatGPT’s article good enough? No. At best I might use some of what it wrote in the middle of some other article but in that case I would be doing all the work to make it a CS4FN article.
ChatGPT hasn’t written a CS4FN article in any sense other than in writing about computing.
Was it trained on material from CS4FN to allow it to pick up what CS4FN was? We originally assumed so – our material has been freely accessible on the web for 20 years and the web is supposedly the chatbots’ training ground. If so I would have expected it to do much better at getting the style right (though if it has used our material it should have credited us!). I’m left thinking that actually when it is asked to write articles or essays without more guidance it understands, it just always writes about machine learning! (Just like I always used to write science fiction stories for every story my English teacher set, to his exasperation!) We assumed, because it wrote about a computing topic, that it did understand, but perhaps, it is all a chimera. Perhaps it didn’t actually understand the brief even to the level of knowing it was being asked to write about computing and just hit lucky. Who knows? It is a black box. We could investigate more, but this is a simple example of why we need Artificial Intelligences that can justify their decisions!
Of course we could work harder to train it up as I would a human member of our team. With more of the right prompting we could perhaps get it there. Also given time the chatbots will get far better, anyway. Even without that they clearly can now do good basic factual writing so, yes, lots of writing jobs are undoubtedly now at risk (and that includes a wide range of jobs, like lawyers, teachers, and even programmers and the like too) if we as a society decide to let them. We may find the world turns much more vanilla as a result though with writing turning much more bland and boring without the human spark and without us noticing till it is lost (just like modern supermarket tomatoes so often taste bland having lost the intense taste they once had!) … unless the chatbots gain some real creativity.
The basic problem of new technology is it reaps changes irrespective of the human cost (when we allow it to, but we so often do, giddy with the new toys). That is fine if as a society we have strong ways to support those affected. That might involve major support for retraining and education into new jobs created. Alternatively, if fewer jobs are created than destroyed, which is the way we may be going, where jobs become ever scarcer, then we need strong social support systems and no stigma to not having a job. However, currently that is not looking likely and instead changes of recent times have just increased, not reduced inequality, with small numbers getting very, very rich but many others getting far poorer as the jobs left pay less and less.
Perhaps it’s not malevolent Artificial Intelligences of science fiction taking over that is the real threat to humanity. Corporations act like living entities these days, working to ensure their own survival whatever the cost, and we largely let them. Perhaps it is the tech companies and their brand of alien self-serving corporation as ‘intelligent life’ acting as societal disrupters that we need to worry about. Things happen (like technology releases) because the corporation wants them to but at the moment that isn’t always the same as what is best for people long term. We could be heading for a wonderful utopian world where people do not need to work and instead spend their time doing fulfilling things. It increasingly looks like instead we have a very dystopian future to look forward to – if we let the Artificial Intelligences do too many things, taking over jobs, just because they can so that corporations can do things more cheaply, so make more fabulous wealth for the few.
Am I about to lose my job writing articles for CS4FN? I don’t think so. Why do I write CS4FN? I love writing this kind of stuff. It is my hobby as much as anything. So I do it for my own personal pleasure as well as for the good I hope it does whether inspiring and educating people, or just throwing up things to think about. Even if the chatBots were good enough, I wouldn’t stop writing. It is great to have a hobby that may also be useful to others. And why would I stop doing something I do for fun, just because a machine could do it for me? But that is just lucky for me. Others who do it for a living won’t be so lucky.
We really have to stop and think about what we want as humans. Why do we do creative things? Why do we work? Why do we do anything? Replacing us with machines is all well and good, but only if the future for all people is actually better as a result, not just a few.
EPSRC supports this blog through research grant EP/W033615/1.
Alan Turing was born in London on 23 June 1912. His parents were both from successful, well-to-do families, which in the early part of the 20th century in England meant that his childhood was pretty stuffy. He didn’t see his parents much, wasn’t encouraged to be creative, and certainly wasn’t encouraged in his interest in science. But even early in his life, science was what he loved to do. He kept up his interest while he was away at boarding school, even though his teachers thought it was beneath well-bred students. When he was 16 he met a boy called Christopher Morcom who was also very interested in science. Christopher became Alan’s best friend, and probably his first big crush. When Christopher died suddenly a couple of years later, Alan partly helped deal with his grief with science, by studying whether the mind was made of matter, and where – if anywhere – the mind went when someone died.
The Turing machine
After he finished school, Alan went to the University of Cambridge to study mathematics, which brought him closer to questions about logic and calculation (and mind). After he graduated he stayed at Cambridge as a fellow, and started working on a problem that had been giving mathematicians headaches: whether it was possible to determine in advance if a particular mathematical proposition was provable. Alan solved it (the answer was no), but it was the way he solved it that helped change the world. He imagined a machine that could move symbols around on a paper tape to calculate answers. It would be like a mind, said Alan, only mechanical. You could give it a set of instructions to follow, the machine would move the symbols around and you would have your answer. This imaginary machine came to be called a Turing machine, and it forms the basis of how modern computers work.
Code-breaking at Bletchley Park
By the time the Second World War came round, Alan was a successful mathematician who’d spent time working with the greatest minds in his field. The British government needed mathematicians to help them crack the German codes so they could read their secret communiqués. Alan had been helping them on and off already, but when war broke out he moved to the British code-breaking headquarters at Bletchley Park to work full-time. Based on work by Polish mathematicians, he helped crack one of the Germans’ most baffling codes, called the Enigma, by designing a machine (based on earlier version by the Poles again!) that could help break Enigma messages as long as you could guess a small bit of the text (see box). With the help of British intelligence that guesswork was possible, so Alan and his team began regularly deciphering messages from ships and U-boats. As the war went on the codes got harder, but Alan and his colleagues at Bletchley designed even more impressive machines. They brought in telephone engineers to help marry Alan’s ideas about logic and statistics with electronic circuitry. That combination was about to produce the modern world.
Building a brain
The problem was that the engineers and code-breakers were still having to make a new machine for every job they wanted it to do. But Alan still had his idea for the Turing machine, which could do any calculation as long as you gave it different instructions. By the end of the war Alan was ready to have a go at building a Turing machine in real life. If it all went to plan, it would be the first modern electronic computer, but Alan thought of it as “building a brain”. Others were interested in building a brain, though, and soon there were teams elsewhere in the UK and the USA in the race too. Eventually a group in Manchester made Alan’s ideas a reality.
Troubled times
Not long after, he went to work at Manchester himself. He started thinking about new and different questions, like whether machines could be intelligent, and how plants and animals get their shape. But before he had much of a chance to explore these interests, Alan was arrested. In the 1950s, gay sex was illegal in the UK, and the police had discovered Alan’s relationship with a man. Alan didn’t hide his sexuality from his friends, and at his trial Alan never denied that he had relationships with men. He simply said that he didn’t see what was wrong with it. He was convicted, and forced to take hormone injections for a year as a form of chemical castration.
Although he had had a very rough period in his life, he kept living as well as possible, becoming closer to his friends, going on holiday and continuing his work in biology and physics. Then, in June 1954, his cleaner found him dead in his bed, with a half-eaten, cyanide-laced apple beside him.
Alan’s suicide was a tragic, unjust end to a life that made so much of the future possible.
The chatbots have suddenly got everyone talking, though about them as much as with them. Why? Because one, chatGPT has (amongst other things) reached the level of being able to fool us into thinking that it is a pretty good student.
It’s not exactly what Alan Turing was thinking about when he broached his idea of a test for intelligence for machines: if we cannot tell them apart from a human then we must accept they are intelligent. His test involved having a conversation with them over an extended period before making the decision, and that is subtly different to asking questions.
ChatGPT may be pretty close to passing an actual Turing Test but it probably still isn’t there yet. Ask the right questions and it behaves differently to a human. For example, ask it to prove that the square root of 2 is irrational and it can do it easily, and looks amazingly smart, – there are lots of versions of the proof out there that it has absorbed. It isn’t actually good at maths though. Ask it to simply count or add things and it can get it wrong. Essentially, it is just good at determining the right information from the vast store of information it has been trained on and then presenting it in a human-like way. It is arguably the way it can present it “in its own words” that makes it seem especially impressive.
Will we accept that it is “intelligent”? Once it was said that if a machine could beat humans at chess it would be intelligent. When one beat the best human, we just said “it’s not really intelligent – it can only play chess””. Perhaps chatGPT is just good at answering questions (amongst other things) but we won’t accept that as “intelligent” even if it is how we judge humans. What it can do is impressive and a step forward, though. Also, it is worth noting other AIs are better at some of the things it is weak at – logical thinking, counting, doing arithmetic, and so on. It likely won’t be long before the different AIs’ mistakes and weaknesses are ironed out and we have ones that can do it all.
Rather than asking whether it is intelligent, what has got everyone talking though (in universities and schools at least) is that chatGPT has shown that it can answer all sorts of questions we traditionally use for tests well enough to pass exams. The issue is that students can now use it instead of their own brains. The cry is out that we must abandon setting humans essays, we should no longer ask them to explain things, nor for that matter write (small) programs. These are all things chatGPT can now do well enough to pass such tests for any student unable to do them themselves. Others say we should be preparing students for the future so its ok, from now on, we just only test what human and chatGPT can do together.
It certainly means assessment needs to be rethought to some extent, and of course this is just the start: the chatbots are only going to get better, so we had better do the thinking fast. The situation is very like the advent of calculators, though. Yes, we need everyone to learn to use calculators. But calculators didn’t mean we had to stop learning how to do maths ourselves. Essay writing, explaining, writing simple programs, analytical skills, etc, just like arithmetic, are all about core skill development, building the skills to then build on. The fact that a chatbot can do it too doesn’t mean we should stop learning and practicing those skills (and assessing them as an inducement to learn as well as a check on whether the learning has been successful). So the question should not be about what we should stop doing, but more about how we make sure students do carry on learning. A big, bad thing about cheating (aside from unfairness) is that the person who decides to cheat loses the opportunity to learn. Chatbots should not stop humans learning either.
The biggest gain we can give a student is to teach them how to learn, so now we have to work out how to make sure they continue to learn in this new world, rather than just hand over all their learning tasks to the chatbot to do. As many people have pointed out, there are not just bad ways to use a chatbot, there are also ways we can use chatbots as teaching tools. Used well by an autonomous learner they can act as a personal tutor, explaining things they realise they don’t understand immediately, so becoming a basis for that student doing very effective deliberate learning, fixing understanding before moving on.
Of course, a bigger problem, if a chatbot can do things at least as well as we can then why would a company employ a person rather than just hire an AI? The AIs can now a lot of jobs we assumed were ours to do. It could be yet another way of technology focussing vast wealth on the few and taking from the many. Unless our intent is a distopian science fiction future where most humans have no role and no point, (see for example, CS Forester’s classic, The Machine Stops) then we still in any case ought to learn skills. If we are to keep ahead of the AIs and use them as a tool not be replaced by them, we need the basic skills to build on to gain the more advanced ones needed for the future. Learning skills is also, of course, a powerful way for humans (if not yet chatbots) to gain self-fulfilment and so happiness.
Right now, an issue is that the current generation of chatbots are still very capable of being wrong. chatGPT is like an over confident student. It will answer anything you ask, but it gives wrong answers just as confidently as right ones. Tell it it is wrong and it will give you a new answer just as confidently and possibly just as wrong. If people are to use it in place of thinking for themselves then, in the short term at least, they still need the skill it doesn’t have of judging when it is right or wrong.
So what should we do about assessment. Formal exams come back to the fore so that conditions are controlled. They make it clear you have to be able to do it yourself. Open book online tests that become popular in the pandemic, are unlikely to be fair assessments any more, but arguably they never were. Chatbots or not they were always too easy to cheat in. They may well be good still for learning. Perhaps in future if the chatbots are so clever then we could turn the Turing test around: we just ask an artificial intelligence to decide whether particular humans (our students) are “intelligent” or not…
Alternatively, if we don’t like the solutions being suggesting about the problems these new chatbots are raising, there is now another way forward. If they are so clever, we could just ask a chatbot to tell us what we should do about chatbots…
Flies are small, fast and rather cunning. Try to swat one and you will see just how efficient their brain is, even though it has so few brain cells that each one of them can be counted and given a number. A fly’s brain is a wonderful proof that, if you know what you’re doing, you can efficiently perform clever calculations with a minimum of hardware. The average household fly’s ability to detect movement in the surrounding environment, whether it’s a fly swat or your hand, is due to some cunning wiring in their brain.
Movement is measured by detecting something changing position over time. The ratio distance/time gives us the speed, and flies have built in speed detectors. In the fly’s eye, a wonderful piece of optical engineering in itself with hundreds of lenses forming the mosaic of the compound eye, each lens looks at a different part of the surrounding world, and so each registers if something is at a particular position in space.
All the lenses are also linked by a series of nerve cells. These nerve cells each have a different delay. That means a signal takes longer to pass along one nerve than another. When a lens spots an object in its part of the world, say position A, this causes a signal to fire into the nerve cells, and these signals spread out with different delays to the other lenses’ positions.
The separation between the different areas that the lenses view (distance) and the delays in the connecting nerve cells (time) are such that a whole range of possible speeds are coded in the nerve cells. The fly’s brain just has to match the speed of the passing object with one of the speeds that are encoded in the nerve cells. When the object moves from A to B, the fly knows the correct speed if the first delayed signal from position A arrives at the same time as the new signal at position B. The arrival of the two signals is correlated. That means they are linked by a well-defined relation, in this case the speed they are representing.
Do locusts like Star Wars?
Understanding the way that insects see gives us clever new ways to build things, and can also lead to some bizarre experiments. Researchers in Newcastle showed locusts edited highlights from the original movie Star Wars. Why you might ask? Do locusts enjoy a good Science Fiction movie? It turns out that the researchers were looking to see if locusts could detect collisions. There are plenty of those in the battles between X-wing fighters and Tie fighters. They also wanted to know if this collision detecting ability could be turned into a design for a computer chip. The work, part-funded by car-maker Volvo, used such a strange way to examine locust’s vision that it won an Ig Nobel award in 2005. Ig Noble awards are presented each year for weird and wonderful scientific experiments, and have the motto ‘Research that makes people laugh then think’. You can find out more at http://improbable.com
Car crash: who is to blame?
So what happens if we start to use these insect ‘eye’ detectors in cars, building
We now have smart cars with the artificial intelligence (AI) taking over from the driver completely or just to avoid hitting other things. An interesting question arises. When an accident does happen, who is to blame? Is it the car driver: are they in charge of the vehicle? Is it the AI to blame? Who is responsible for that: the AI itself (if one day we give machines human-like rights), the car manufacturer? Is it the computer scientists who wrote the program? If we do build cars with fly or locust like intelligence, which avoid accidents like flies avoid swatting or can spot possible collisions like locusts, is it the insect whose brain was copied that is to blame!?!What will insurance companies decide? What about the courts?
As computer science makes new things possible, society quickly needs to decide how to deal with them. Unlike the smart cars, these decisions aren’t something we can avoid.
by Peter W McOwan, Queen Mary University of London(updated from the archive)
The languages of the world are going extinct at a rapid rate. As the numbers of people who still speak a language dwindle, the chance of it surviving dwindles too. As the last person dies, the language is gone forever. To be the last living speaker of the language of your ancestors must be a terribly sad ordeal. One language’s extinction bordered on the surreal. The last time the language of the Atures, in South America was heard, it was spoken by a parrot: an old blue-and-yellow macaw, that had survived the death of all the local people.
Why do languages die?
The reason smaller languages die are varied, from war and genocide, to disease and natural disaster, to the enticement of bigger, pushier languages. Can technology help? In fact global media: films, music and television are helping languages to die, as the youth turn their backs on the languages of their parents. The Web with its early English bias may also be helping to push minority languages even faster to the brink. Computers could be a force for good though, protecting the world’s languages, rather than destroying them.
Unicode to the rescue
In the early days of the web, web pages used the English alphabet. Everything in a computer is just stored as numbers, including letters: 1 for ‘a’, 2 for ‘b’, for example. As long as different computers agree on the code they can print them to the screen as the same letter. A problem with early web pages is there were lots of different encodings of numbers to letters. Worse still only enough numbers were set aside for the English alphabet in the widely used encodings. Not good if you want to use a computer to support other languages with their variety of accents and completely different sets of characters. A new universal encoding system called Unicode came to the rescue. It aims to be a single universal character encoding – with enough numbers allocated for ALL languages. It is therefore allowing the web to be truly multi-lingual.
Languages are spoken
Languages are not just written but are spoken. Computers can help there, too, though. Linguists around the world record speakers of smaller languages, understanding them, preserving them. Originally this was done using tapes. Now the languages can be stored on multimedia computers. Computers are not just restricted to playing back recordings but can also actively speak written text. The web also allows much wider access to such materials that can also be embedded in online learning resources, helping new people to learn the languages. Language translators such as BabelFish and Google Translate can also help, though they are still far from perfect even for common languages. The problem is that things do not translate easily between languages – each language really does constitute a different way of thinking, not just of talking. Some thoughts are hard to even think in a different language.
AI to the rescue?
Even that is not enough. To truly preserve a language, the speakers need to use it in everyday life, for everyday conversation. Speakers need someone to speak with. Learning a language is not just about learning the words but learning the culture and the way of thinking, of actively using the language. Perhaps future computers could help there too. A long-time goal of artificial intelligence (AI) researchers is to develop computers that can hold real conversations. In fact this is the basis of the original test for computer intelligence suggested by Alan Turing back in 1950…if a computer is indistinguishable from a human in conversation, then it is intelligent. There is also an annual competition that embodies this test: the Loebner Prize. It would be great if in the future, computer AIs could help save languages by being additional everyday speakers holding real conversations, being real friends.
Time is running out… by the time the AIs arrive, the majority of languages may be gone forever.
Too late?
The problem is that time is running out. Artificial intelligences that can have totally realistic human conversations even in English are still a way off. None have passed the Turing Test. To speak different languages really well for everyday conversations those AIs will have to learn the different cultures and ‘think’ in the different languages. The window of opportunity is disappearing. By the time the AIs arrive the majority of human languages may be gone forever. Let’s hope that computer scientists and linguists do solve the problems in time, and that computers are not used just to preserve languages for academic interest, but really can help them to survive. It is sad that the last living creature to speak Atures was a parrot. It would be equally sad if the last speakers of all current languages bar English, Spanish and Chinese say, were computers.
Laugh and the world laughs with you they say, but what if you’re a computer. Can a computer have a ‘sense of humour’?
Computer generated jokes can do more than give us a laugh. Human language in jokes can often be ambiguous: words can have two meanings. For example the word ‘bore’ can mean a person who is uninteresting or could be to do with drilling … and if spoken it could be about a male pig. It’s often this slip between the meaning of words that makes jokes work (work that joke out for yourself). To be able to understand how human based humour works, and build a computer program that can make us laugh will give us a better understanding of how the human mind works … and human minds are never boring.
Many researchers believe that jokes come from the unexpected. As humans we have a brain that can try to ‘predict the future’, for example when catching a fast ball our brains have a simple learned mathematical model of the physics so we can predict where the ball will be and catch it. Similarly in stories we have a feel for where it should be going, and when the story takes an unexpected turn, we often find this funny. The shaggy dog story is an example; it’s a long series of parts of a story that build our expectations, only to have the end prove us wrong. We laugh (or groan) when the unexpected twist occurs. It’s like the ball suddenly doing three loop-the-loops then stopping in mid-air. It’s not what we expect. It’s against the rules and we see that as funny.
Some artificial intelligence researchers who are interested in understanding how language works look at jokes as a way to understand how we use language. Graham Richie was one early such researcher, and funnily enough he presented his work at an April Fools’ Day Workshop on Computational Humour. Richie looked at puns: simple gags that work by a play on words, and created a computer program called JAPE that generates jokes.
How do we know if the computer has a sense of humour? Well how would we know a human comic had a sense of humour? We’d get them to tell a joke. Now suppose that we had a test where we had a set of jokes, some made by humans and some by computers, and suppose we couldn’t tell the difference? If you can’t tell which is computer generated and which is human generated then the argument goes that the computer program must, in some way, have captured the human ability. This is called a Turing Test after the computer scientist Alan Turing. The original idea was to use it as a test for intelligence but we can use the same idea as a test for an ability to be funny too.
So let’s finish with a joke (and test). Which of the following is a joke created by a computer program following Richie’s theory of puns, and which is a human’s attempt? Will humans or machines have the last laugh on this test?
Have your vote: which of these two jokes do you think was written by a computer and which by a human.
1) What’s fast and wiry?
… An aircraft hanger!
2) What’s green and bounces?
… A spring cabbage!
Make your choice before scrolling down to find the answer.
This blog is funded through EPSRC grant EP/W033615/1.
The answers
Could you tell which of the two jokes was written by a human’s and which by a computer?
Lots of cs4fn readers voted over several years and the voting went:
58 % votes cast believed the aircraft hanger joke is computer generated
42 % votes cast believed the spring cabbage joke is computer generated
In fact …
The aircraft hanger joke was the work of a computer.
The spring cabbage joke was the human generated cracker.
If the voters were doing no better than guessing then the votes would be about 50-50: no better than tossing a coin to decide. Then the computer was doing as well at being funny as the human. A vote share of 58-42 suggests (on the basis of this one joke only) that the computer is getting there, but perhaps doesn’t quite have as good a sense of humour as the human who invented the spring cabbage joke. A real test would use lots more jokes, of course. If doing a real experiment it would also be important that they were not only generated by the human/computer but selected by them too (or possibly selected at random from ones they each picked out as their best). By using ones we selected our sense of humour could be getting in the way of a fair test.
Iain M Banks’s science fiction novels about ‘The Culture’ imagine a universe inhabited (and largely run) by ‘Minds’. These are incredibly intelligent machines – mainly spaceships – that are also independently thinking conscious beings with their own personalities. From the replicants in Blade Runner and robots in Star Wars to Iain M Banks’s Minds, science fiction is full of intelligent machines. Could we ever really create a machine with a mind: not just a computer that computes, one that really thinks? Philosophers have been arguing about it for centuries. Things came to a head when philosopher John Searle came up with a thought experiment called the ‘Chinese room’. He claims it gives a cast iron argument that programmed ‘Minds’ can never exist. Are the computer scientists who are trying to build real artificial intelligences wasting their time? Or could zombies lurch to the rescue?
The Shaolin warrior monk
Imagine that the galaxy is populated by an advanced civilisation that has solved the problem of creating artificial intelligence programs. Wanting to observe us more closely they build a replicant that looks, dresses and moves just like a Shaolin warrior monk (it has to protect itself and the aliens watch too much TV!) They create a program for it that encodes the rules of Chinese. The machine is dispatched to Earth. Claiming to have taken a vow of silence, it does not speak (the aliens weren’t hot on accents). It reads Chinese characters written by the earthlings, then follows the instructions in its Chinese program that tell it the Chinese characters to write in response. It duly has written conversations with all the earthlings it meets as it wanders the planet, leaving them all in no doubt that they have been conversing with a real human Chinese speaker.
The question is, is that machine monk really a Mind? Does it really understand Chinese or is it just simulating that ability?
The Chinese room
Searle answers this by imagining a room in which a human sits. She speaks no Chinese but instead has a book of rules – the aliens’ computer program written out in English. People pass in Chinese symbols through a slot. She looks them up in the book and it tells her the Chinese symbols to pass back out. As she doesn’t understand Chinese she has no idea what the symbols coming in or going out mean. She is just uncomprehendingly following the book. Yet to the outside world she seems to be just as much a native speaker as that machine monk. She is simulating the ability to understand Chinese. As she’s using the same program as the monk, doing exactly what it would do, it follows that the machine monk is also just simulating intelligence. Therefore programs cannot understand. They cannot have a mind.
Is that machine monk a Mind?
Searle’s argument is built on some assumptions. Programs are ‘syntactic devices’: that just means they move symbols around, swapping them for others. They do it without giving those symbols any meaning. A human mind on the other hand works with ‘semantics’ – the meanings of symbols not just the symbols themselves. We understand what the symbols mean. The Chinese room is supposed to show you can’t get meaning by pushing symbols around. As any future artificial intelligence will be based on programs pushing symbols around they will not be a Mind that understands what it is doing.
The zombies are coming
So is this argument really cast iron? It has generated lots of debate, virtually all of it aiming to prove Searle wrong. The counter-arguments are varied and even the zombies have piled in to fight the cause: philosophical ones at least. What is a philosophical zombie? It’s just a human with no consciousness, no mind. One way to attack Searle’s argument is to attack the assumptions. That’s what the zombies are there to do. If the assumptions aren’t actually true then the argument falls apart. According to Searle human brains do something more than push symbols about\; they have a way of working with meaning. However, there can’t be a way of telling that by talking to one as otherwise it could have been used to tell that the machine monk wasn’t a mind.
Imagine then, there has been a nuclear accident and lots of babies are born with a genetic mutation that makes them zombies. They have no mind so no ability to understand meaning. Despite that they act exactly like humans: so much so that there is no way to tell zombies and humans apart. The zombies grow up, marry and have zombie children.
Presumably zombie brains are simpler than human ones – they don’t have whatever complication it is that introduces minds. Being simpler they have a fitness advantage that will allow them to out-compete humans. They won’t need to roam the streets killing humans to take over the world. If they wait long enough and keep having children, natural selection will do it for them.
The zombies are here
The point is it could have already happened. We could all be zombies but just don’t know it. We think we are conscious but that could just be an illusion – another simulation. We have no way to prove we are not zombies and if we could be zombies then Searle’s assumption that we are different to machines may not be true. The Chinese room argument falls apart.
Does it matter?
The arguments and counter arguments continue. To an engineer trying to build an artificial intelligence this actually doesn’t matter. Whether you have built a Mind or just something that exactly simulates one makes no practical difference. It makes a big difference to philosophers, though, and to our understanding of what it means to be human.
Let’s leave the last word to Alan Turing. He pointed out 30 years before the Chinese room was invented that it’s generally considered polite to assume that other humans are Minds like us (not zombies). If we do end up with machine intelligences so good we can’t tell they aren’t human, it would be polite to extend the assumption to them too. That would surely be the only humane thing to do.