Dan Stowell was a researcher at Queen Mary University of London when he founded an early version of what is now known as a Social Venture: a company created to do social good. With Florence Wilkinson, he turned birdsong into a tech-based social good.
His research is about designing methods that computers can use to make sense of bird sounds. One day he met Florence Wilkinson, who works with businesses and young people, and they discovered they both had the same idea: “What if we could make an app that recognises bird sounds?” They decided to create a startup company, Warblr, to make it happen. However, unlike many research driven startups its main aim was not to make money but to do a social good. Dan and FLorence built this into their company mission statement:
…to reconnect people with the natural world through technology. We want to get as many people outdoors as possible, learning about the wildlife on their doorstep and how to protect it.
Dan brought the technical computer science skills needed to create the app, and Florence brought the marketing and communication skills needed to ensure people would hear about it. Together, they persuaded Queen Mary University of London’s innovation unit to give them a start-up grant. As a result their app Warblr exists and even gained some press coverage.
It can help people connect with nature by helping recognise birds – after all one of the problems with bird watching is they are so damned hard to spot and lots that flit by just look like little brown things! However, they are far easier to hear. Once you know what is out there then it adds incentive to try to actually spot it. However, the app has another purpose too. It collects data about the birds spotted, recording the species and where and when it was seen, with that data then made freely available to researchers.
Social ventures are a relatively new idea that universities are now supporting to help their researchers do social good that is sustainable and not just something that lasts until the grants run out. As Dan and Florence showed though, as a researcher you do not need to commit to do everything. To be a successful innovator you need more than technical skills, though. You need the ability to be part of a great team and to recognise a sound deal!
Updated from the archive, written by Paul Curzon, Queen Mary University of London.
Mike Lynch was one of Britain’s most successful entrepreneurs. An electrical engineer, he built his businesses around machine learning long before it was a buzz phrase. He also drew heavily on a branch of maths called Bayesian statistics which is concerned with understanding how likely, even apparently unlikely, things are to actually happen. This was so central to his success that he named his super yacht, Bayesian, after it. Tragically, he died on the yacht, when Bayesian sank in a freak, extremely unlikely, accident. The gods of the sea are cruel.
Mike started his path to becoming an entrepreneur at school. He was interested in music, and especially the then new but increasingly exciting, digital synthesisers that were being used by pop bands, and were in the middle of revolutionising music. He couldn’t afford one of his own, though, as they cost thousands. He was sure he could design and build one to sell more cheaply. So he set about doing it.
He continued working on his synthesiser project as a hobby at Cambridge University, where he originally studied science, but changed to his by-then passion of electrical engineering. A risk of visiting his room was that you might painfully step on a resistor or capacitor, as they got everywhere. That was not surprising giving his living room was also his workshop. By this point he was also working more specifically on the idea of setting up a company to sell his synthesiser designs. He eventually got his first break in the business world when chatting to someone in a pub who was in the music industry. They were inspired enough to give him the few thousand pounds he needed to finance his first startup company, Lynett Systems.
By now he was doing a PhD in electrical engineering, funded by EPSRC, and went on to become a research fellow building both his research and innovation skills. His focus was on signal processing which was a natural research area given his work on synthesisers. They are essentially just computers that generate sounds. They create digital signals representing sounds and allow you to manipulate them to create new sounds. It is all just signal processing where the signals ultimately represent music.
However, Mike’s research and ideas were more general than just being applicable to audio. Ultimately, Mike moved away from music, and focussed on using his signal processing skills, and ideas around pattern matching to process images. Images are signals too (resulting from light rather than sound). Making a machine understand what is actually in a picture (really just lots of patches of coloured light) is a signal processing problem. To work out what an image shows, you need to turn those coloured blobs into lines, then into shapes, then into objects that you can identify. Our brains do this seamlessly so it seems easy to us, but actually it is a very hard problem, one that evolution has just found good solutions to. This is what happens whether the image is that captured by the camera of a robot “eye” trying to understand the world or a machine trying to work out what a medical scan shows.
This is where the need for maths comes in to work out probabilities, how likely different things are. Part of the task of recognising lines, shapes and objects is working out how likely one possibility is over another. How likely is it that that band of light is a line, how likely is it that that line is part of this shape rather than that, and so on. Bayesian statistics gives a way to compute probabilities based on the information you already know (or suspect). When the likelihood of events is seen through this lens, things that seem highly unlikely, can turn out to be highly probably (or vice versa), so it can give much more accurate predictions than traditional statistics. Mike’s PhD used this way of calculating probabilities even though some statisticians disdained it. Because of that it was shunned by some in the machine learning community too, but Mike embraced it and made it central to all his work, which gave his programs an edge.
While Lynett Systems didn’t itself make him a billionaire, the experience from setting up that first company became a launch pad for other innovations based on similar technology and ideas. It gave him the initial experience and skills, but also meant he had started to build the networks with potential investors. He did what great entrepreneurs do and didn’t rest on his laurels with just one idea and one company, but started to work on new ideas, and new companies arising from his PhD research.
He realised one important market for image pattern recognition, that was ripe for dominating, was fingerprint recognition. He therefore set about writing software that could match fingerprints far faster and more accurately than anyone else. His new company, Cambridge Neurodynamics, filled a gap, with his software being used by Police Forces nationwide. That then led to other spin-offs using similar technology
He was turning the computational thinking skills of abstraction and generalisation into a way to make money. By creating core general technology that solved the very general problems of signal processing and pattern matching, he could then relatively easily adapt and reuse it to apply to apparently different novel problems, and so markets, with one product leading to the next. By applying his image recognition solution to characters, for example, he created software (and a new company) that searched documents based on character recognition. That led on to a company searching databases, and finally to the company that made him famous, Autonomy.
One of his great loves was his dog, Toby, a friendly enthusiastic beast. Mike’s take on the idea of a search engine was fronted by Toby – in an early version, with his sights set on the nascent search engine market, his search engine user interface involved a lovable, cartoon dog who enthusiastically fetched the information you needed. However, in business finding your market and getting the right business model is everything. Rather than competing with the big US search engine companies that were emerging, he switched to focussing on in-house business applications. He realised businesses were becoming overwhelmed with the amount of information they held on their servers, whether in documents or emails, phone calls or videos. Filing cabinets were becoming history and being replaced by an anarchic mess of files holding different media, individually organised, if at all, and containing “unstructured data”. This kind of data contrasts with the then dominant idea that important data should be organised and stored in a database to make processing it easier. Mike realised that there was lots of data held by companies that mattered to them, but that just was not structured like that and never would be. There was a niche market there to provide a novel solution to a newly emerging business problem. Focussing on that, his search company, Autonomy, took off, gaining corporate giants as clients including the BBC. As a hands-on CEO, with both the technical skills to write the code himself and the business skills to turn it into products businesses needed, he ensured the company quickly grew. It was ultimately sold for $11 billion. (The sale led to an accusation of fraud in hte US, but, innocent, he was acquitted of all the charges).
Investing
From firsthand experience he knew that to turn an idea into reality you needed angel investors: people willing to take a chance on your ideas. With the money he made, he therefore started investing himself, pouring the money he was making from his companies into other people’s ideas. To be a successful investor you need to invest in companies likely to succeed while avoiding ones that will fail. This is also about understanding the likelihood of different things, obviously something he was good at. When he ultimately sold Autonomy, he used the money to create his own investment company, Invoke Capital. Through it he invested in a variety of tech startups across a wide range of areas, from cyber security, crime and law applications to medical and biomedical technologies, using his own technical skills and deep scientific knowledge to help make the right decisions. As a result, he contributed to the thriving Silicon Fen community of UK startup entrepreneurs, who were and continue to do exciting things in and around Cambridge, turning research and innovation into successful, innovative companies. He did this not only through his own ideas but by supporting the ideas of others.
Mike was successful because he combined business skills with a wide variety of technical skills including maths, electronic engineering and computer science, even bioengineering. He didn’t use his success to just build up a fortune but reinvested it in new ideas, new companies and new people. He has left a wonderful legacy as a result, all the more so if others follow his lead and invest their success in the success of others too.
Just because you start a start-up doesn’t mean you have to be the boss (the CEO) running the company… Hamit Soyel didn’t and his research-based company, DragonFlyAI is flourishing.
Hamit’s computer science research (with Peter McOwan) at Queen Mary concerns understanding human (and animal) vision systems. Building on the research of neuroscientists they created computational models of vision systems. These are just programs that work in the way we believe our brains process what we see. If our understanding is correct then the models should see as we see. For example, one aspect of this is how our attention is drawn to some things and not others. If the model is accurate, it should be able to predict things we will definitely notice, and predict things we probably won’t. It turned out their models were really good at this.
They realised that their models had applications in marketing and advertising (an advert that no one notices is a waste of money). They therefore created a startup company based on their research. Peter sadly died not long after the company was founded leaving Hamit to make it a success. He had a choice to make though. Often people who start a startup company set themselves up as the CEO: it is their company so they want control. To do this you need good business skills though and also to be willing to devote the time to make the business a success. You got to this point though because of your technical and creative skills,
When you start a company you want to make a difference, but to actually do that you need a strong team and that team doesn’t have to be “behind” you, they can be “with” you – after all the best teams are made up of specialists who work to their strengths as well as supporting and working well with each other. Perhaps your strengths lie elsewhere, rather than in running a business,
With support from Queen Mary Innovations who helped him set up DragonflyAI and have supported it through its early years, Hamit decided his strengths were in the creative and technical side of the business, so he became the Chief Scientist and Inventor rather than the CEO. That role was handed to an expert as were the other senior leadership roles such as Marketing and Sales, Operations and Customer Success. That meant Hamit could focus on what he did best in further developing the models, as well as in innovating new ideas. This approach also gives confidence to investors that the leadership team do know what they are doing and that if they like the ideas then the company will be a success.
As a result, Hamit’s business is now a big success having helped a whole series of global companies improve their marketing, including Mars and Coca-Cola. DragonflyAI also recently raised $6m in funding from investors to further develop the business.
As Hamit points out:
By delegating operations to a professional leadership team, you can concentrate on areas you truly enjoy that fuel your passion and creativity, ultimately enhancing your fulfilment and contribution to your company and driving collective success.”
To be the CEO or not be the CEO depends on your skills and ambition, but you must also think about what is best for the company, as Hamit has pointed out. It is important to realise though that you do not have to be the CEO just because you founded the company.
– Paul Curzon, Queen Mary University of London,
based on an interview between Hamit Soyel and Queen Mary Innovations
Becoming a successful entrepreneur often starts with seeing a need: a problem someone has that needs to be fixed. For David Ronan, the need was for anyone to mix and master music but the problem was that of how hard it is to do this. Now his company RoEx is fixing that problem by combining signal processing ans artificial intelligence tools applied to music. It is based on his research originally as a PhD student
Musicians want to make music, though by “make music” they likely mean playing or composing music. The task of fiddling with buttons, sliders and dials on a mixing desk to balance the different tracks of music may not be a musician’s idea of what making music is really about, even though it is “making music” to a sound engineer or producer. However, mixing is now an important part of the modern process of creating professional standard music.
This is in part a result of the multitrack record revolution of the 1960s. Multitrack involves recording different parts of the music as different tracks, then combining them later, adding effects, combining them some more … George Martin with the Beatles pioneered its use for mainstream pop music in the 1960s and the Beach Boys created their unique “Pet Sounds” through this kind of multitrack recording too. Now, it is totally standard. Originally, though, recording music involved running a recording machine while a band, orchestra and/or singers did their thing together. If it wasn’t good enough they would do it all again from the beginning (and again, and again…). This is similar to the way that actors will act the same scene over and over dozens of times until the director is happy. Once happy with the take (or recording) that was basically it and they moved on to the next song to record.
With the advent of multitracking, each musician could instead play or sing their part on their own. They didn’t have to record at the same time or even be in the same place as the separate parts could be mixed together into a single whole later. Then it became the job of engineers and the producer to put it all together into a single whole. Part of this is to adjust the levels of each track so they are balanced. You want to hear the vocals, for example, and not have them drowned out by the drums. At this point the engineer can also fix mistakes, cutting in a rerecording of one small part to replace something that wasn’t played quite right. Different special effects can also be applied to different tracks (playing one track at a different speed or even backwards, with reverb or auto-tuned, for example). You can also take one singer and allow them to sing with multiple versions of themselves so that they are their own backing group, and are singing layered harmonies with themselves. One person can even play all the separate instruments as, for example, Prince often did on his recordings. The engineers and producer also put it all together and create the final sound, making the final master recording. Some musicians, like Madonna, Ariana Grande and Taylor Swift do take part in the production and engineering parts of making their records or even take over completely, so they have total control of their sound. It takes experience though and why shouldn’t everyone have that amount of creative control?
Doing all the mixing, correction and overdubbing can be laborious and takes a lot of skill, though. It can be very creative in itself too, which is why producers are often as famous as the artists they produce (think Quincy Jones or Nile Rogers, for example). However, not everyone wanting to make their own music is interested in spending their time doing laborious mixing, but if you don’t yet have the skill yourself and cant afford to pay a producer what do you do?
That was the need that David spotted. He wanted to do for music what instagram filters did for images, and make it easy for anyone to make and publish their own professional standard music. Based in part on his PhD research he developed tools that could do the mixing, leaving a musician to focus on experimenting with the sound itself.
David had spent several years leading the research team of an earlier startup he helped found called AI Music. It worked on adaptive music: music that changes based on what is happening around it, whether in the world or in a video game being played. It was later bought by Apple. This was the highlight of his career to that point and it helped cement his desire to continue to be an innovator and entrepreneur.
With the help of Queen Mary, where he did his PhD, he therefore decided to set up his new company RoEx. It provides an AI driven mixing and mastering service. You choose basic mixing options as well as have the ability to experiment with different results, so still have creative control. However, you no longer need expensive equipment, nor need to build the skills to use it. The process becomes far faster too. Mixing your music becomes much more about experimenting with the sound: the machine having taken over the laborious parts, working out the optimum way to mix different tracks and produce a professional quality master recording at the end.
David didn’t just see a need and have an idea of how to solve it, he turned it into something that people want to use by not only developing the technology, but also making sure he really understood the need. He worked with musicians and producers through a long research and development process to ensure his product really works for any musician.
Computers get faster and faster every year. How come? Because computer scientists and electronic engineers keep thinking up new tricks, completely new ways to make them go faster. One way has been to shrink the components so signals don’t have as far to go. Another is to use the same trick they were using in a beach car park I came across on holiday.
Woolacombe Sands in Devon is one of the most popular beaches around. There is a great expanse of beautiful sand as well as rocks for kids to climb on and good surfing too. The weather is even good there – well most of the time. The car park, right on the edge of the beach fills in the morning. Since most people arrive early and stay all day it’s a standard price of £5.50 for the day. Entry and exit barriers control the numbers. The entry barrier only allows a car to go in if there is a space and another allows people out when they have paid.
That’s where there is a problem though. The vast majority of people leave around 5pm as the ice cream vans pack up and it’s time to look for dinner. The machine only takes coins, and you insert the money from your car at the barrier. Each driver has to fumble with 5 one-pound coins and a 50p and that takes time. Once the current car moves on out there is then another delay as the driver behind pulls forward to get into a position to put their money in. Without some thought it would lead to long queues behind. Not only that it wouldn’t be very green. Cars are at there worst pumping out pollution when in a jam.
The last thing you want to do to a family who’ve had a great day on your beach is then irritate them by clogging them up in a traffic jam when they try to leave. So what do you do? How can you speed things up (and make sure you aren’t just moving the queue to the morning or to some other ticket machine somewhere else)?
The problem is similar to one in designing a computer chip. Think of the cars as data waiting to be processed (perhaps as part of a calculation) and the barrier as a processing unit where some manipulation of that data is needed. Data waiting to be processed has to be fetched before it can be used, just as the cars have to move up to the barrier before the driver can pay. The fact that the problems are so similar suggests that a solution to one may also be a a solution to the other.
Speed it up
There are lots of ways you could change the system to improve the speed of cars being processed in the car park. This speed that data passes through a system is called the ‘throughput’ of the system. Woolacombe have thought of a simple way to improve their throughput. They put a person with a bit of change next to the barrier to help the drivers. This allows them to keep the relatively simple barrier system they have. It also has advantages in keeping the money in one place and being a foolproof way of ensuring there is a space for everyone who enters. It still maintains all the safeguards of the ticket barrier though. How can that one person speed things up?
What would you do?
So what would YOU do if you were that person? Would you speed things up? Or would you just stand there powerless watching the misery of all those families?
The first thing you could do is to stand by the machine and take the change off the driver and insert it yourself. That will speed things up a little bit because it takes longer for drivers to put the money in as they have to stretch out the window of a car. Also if the driver only has a five pound note you can take it and just insert coins from your change bag rather than wasting time passing it back to the driver to then insert. Similarly if the driver only has 50 pence pieces say, rather than wasting time inserting 10 of them you can take them and insert 5 one-pound coins.
You’ve done some good, and removed problems of the slow people inserting coins but you haven’t really solved the bad problems. Cars aren’t moving at all while you are inserting the 6 coins, and after each car moves through the barrier you are doing nothing but waiting for the next car to pull forward. In an ideal system, with the best throughput, the cars barely stop at all and you are constantly busy.
A Pipeline of Cars
It turns out you can do something about that. It’s called pipelining. There is a way you can be busy dealing with the next car even before it’s got to you. You just have to get ahead of yourself!
How? Before the first car arrives, insert 5 pound coins into the machine and wait. As the driver gets to you and gives you the money, insert his or her 50p, keeping the rest. The barrier opens immediately for the driver who barely has to stop. Better still you are now holding 5 pound coins that you can insert as the next car arrives, leaving you back in an identical situation. That means the next car can drive straight through too, and you are constantly busy as long as there are cars arriving.
Speedy data
So you’ve helped the families leaving the beach, but how might a similar trick speed up a computer? Well you can do a similar thing in the way you get a computer processor to execute the instructions from a program. Suppose your program requires the processor to get some numbers from storage, process them (perhaps multiplying the numbers together) and then store the result somewhere else for later use. Typically a program might do that over and over again, varying where the data comes from and how it is processed.
Early computers would do each instruction in turn – doing the fetching, processing and storing of one instruction before starting the next. But that is just like a car in our car park coming to the barrier, being processed and leaving before the next one moves. Can we pull off the same trick to speed things up? Well, yes of course.
All you need to do is overlap the separate parts. Just as at any time in the car park a car will be driving out, a second will be handing over money and a third pulling forward, the same can happen in the computer. As the first instruction’s result is being stored, the next instruction can already be being processed and the data from the one after that can be fetched from memory. Just by reorganising the way the work is done, we have roughly tripled the speed of our computer as now three things are happening at once.
What we have done is set up a ‘pipeline’ – with a series of instructions all flowing through it, being executed, at the same time. Woolacombe has a pipeline of cars, but in a computer we pipeline data. Either way things get done faster and people are happier.
Computer science happens in some unexpected places – even at the beach – but then perhaps that isn’t so surprising given computers are made of sand!
Other beach-themed articles on this blog include how the origins of how Paul learned to program while on holiday (“The beach, the missionary and my origin myth”) and messages hidden (steganography) within the stripes of deckchairs (“Encrypted deckchairs”).
Computer scientists rely on maths a lot. As mathematicians devise new mathematical theories and tools, computer scientists turn them into useful programs. Mathematicians who are interested in computing and how to make practical use of their maths are incredibly valuable. Ingrid Daubechies is like that. Her work has transformed the way we store images and much besides. She works on the maths behind digital signal processing – how best to manipulate things like music and images in computers. It boils down to wiggly lines.
Pixel pictures
The digital age is founded on the idea that you can represent signals: whether sound or images, radio waves, or electrical signals, as sequences of numbers. We digitise things by breaking them into lots of small pieces, then represent each piece with a number. As I look out my window, I see a bare winter tree, with a robin singing. If I take a picture with a digital camera, the camera divides the scene into small squares (or pixels) and records the colour for each square as a number. The real world I’m looking at isn’t broken into squares, of course. Reality is continuous and the switch to numbers means some of the detail of the real thing is lost. The more pieces you break it into the more detail you record, but when you blow up a digital image too much, eventually it goes blurry. Reality isn’t fuzzy like that. Zoom in on the real thing and you see ever more detail. The advantage of going digital is that, as numbers, the images can be much more quickly and easily stored, transmitted and manipulated by Photoshop-like programs. Digital signal processing is all about how you store and manipulate real-world things, those signals, with numbers.
Curvy components
There are different ways to split signals up when digitising them. One of the bedrocks of digital signal processing is called Fourier Analysis. It’s based on the idea that any signal can be built out of a set of basic building blocks added together. It’s a bit like the way you can mix any colour of paint from the three primary colours: red, blue and yellow. By mixing them in the right proportions you can get any colour. That means you can record colours by just remembering the amounts of each component. For signals, the building blocks are the pure frequencies in the signal. The line showing a heartbeat as seen on a hospital monitor, say, or a piece of music in a sound editing program, can be broken down into a set of smooth curves that go up and down with a given frequency, and which when added together give you the original line – the original signal. The negative parts of one wave can cancel out positive parts of another just as two ripples meeting on a pond combine to give a different pattern to the originals.
This means you can store signals by recording the collection and strength of frequencies needed to build them. For images the frequencies might be about how rapidly the colours change across the image. An image of say a hazy sunset, where the colours are all similar and change gradually, will then be made of low frequencies with rolling wave components. An image with lots of abrupt changes will need lots of high frequency, more spiky, waves to represent all those sudden changes.
Now suppose you have taken a picture and it is all a bit blurry. In the set of frequencies that blurriness will be represented by the long rolling waves across the image: the low frequencies. By filtering out those low frequencies, making them less important and making the high frequency building blocks stronger, we can sharpen the image up.
more like keyhole surgery on a signal than butchering the whole thing.
By filtering in different ways we can have different effects on the image. Some of the most important help compress images. If a digital camera divides the image into fewer pixels it saves memory by storing less data, but you end up with blocky looking pictures. If you instead throw away information by losing some of the frequencies of a Fourier version, the change may be barely noticeable. In fact, drawing on our understanding of how our brains process the world to choose what frequencies to drop we might not see a change in the image at all.
The power of Fourier Analysis is that it allows you to manipulate the whole image in a consistent way, editing a signal by editing its frequency building blocks. However, that power is also a disadvantage. Sometimes you want to have effects that are more local – doing something that’s more like keyhole surgery on a signal than butchering the whole thing.
Wiggly wavelets
That is where wavelets come in. They give a way of focussing on small areas of the signal. The building blocks used with wavelets are not the smooth, forever undulating curves of Fourier analysis, but specially designed functions, ie wiggly lines, that undulate just in a small area – a bit like a single heart beat signal. A ‘mother’ wavelet is combined with variations of it (child wavelets) to make the full set of building blocks: a wavelet family.
Wavelets were perhaps more a curiosity than of practical use to computer scientists, until Ingrid Daubechies came up with compact wavelets that needed only a fixed time to process. The result was a versatile and very practical tool that others have been able to use in all sorts of ways. For example, they give a way to compress images without losing information that matters. This has made a big difference with the FBI’s fingerprint archive, for example. A family of wavelets allows each fingerprint to be represented by just a few wavelets, so a few numbers, rather than the many numbers needed if pixels were stored. The size of the collection takes up 20 times less storage space as wavelets without corrupting the images. That also means it can be sent to others who need it more easily. It matters when each fingerprint would otherwise involve storing or sending 10 Megabytes of data.
People have come up with many more practical uses of Wavelets, from cleaning up old music to classifying stars and detecting earthquakes. Not bad for a wiggly line.