Mixing Research with Entrepreneurship: Find a need and solve it

A mixing desk
Image by Ida from Pixabay

Becoming a successful entrepreneur often starts with seeing a need: a problem someone has that needs to be fixed. For David Ronan, the need was for anyone to mix and master music but the problem was that of how hard it is to do this. Now his company RoEx is fixing that problem by combining signal processing ans artificial intelligence tools applied to music. It is based on his research originally as a PhD student

Musicians want to make music, though by “make music” they likely mean playing or composing music. The task of fiddling with buttons, sliders and dials on a mixing desk to balance the different tracks of music may not be a musician’s idea of what making music is really about, even though it is “making music” to a sound engineer or producer. However, mixing is now an important part of the modern process of creating professional standard music.

This is in part a result of the multitrack record revolution of the 1960s. Multitrack involves recording different parts of the music as different tracks, then combining them later, adding effects, combining them some more … George Martin with the Beatles pioneered its use for mainstream pop music in the 1960s and the Beach Boys created their unique “Pet Sounds” through this kind of multitrack recording too. Now, it is totally standard. Originally, though, recording music involved running a recording machine while a band, orchestra and/or singers did their thing together. If it wasn’t good enough they would do it all again from the beginning (and again, and again…). This is similar to the way that actors will act the same scene over and over dozens of times until the director is happy. Once happy with the take (or recording) that was basically it and they moved on to the next song to record.

With the advent of multitracking, each musician could instead play or sing their part on their own. They didn’t have to record at the same time or even be in the same place as the separate parts could be mixed together into a single whole later. Then it became the job of engineers and the producer to put it all together into a single whole. Part of this is to adjust the levels of each track so they are balanced. You want to hear the vocals, for example, and not have them drowned out by the drums. At this point the engineer can also fix mistakes, cutting in a rerecording of one small part to replace something that wasn’t played quite right. Different special effects can also be applied to different tracks (playing one track at a different speed or even backwards, with reverb or auto-tuned, for example). You can also take one singer and allow them to sing with multiple versions of themselves so that they are their own backing group, and are singing layered harmonies with themselves. One person can even play all the separate instruments as, for example, Prince often did on his recordings. The engineers and producer also put it all together and create the final sound, making the final master recording. Some musicians, like Madonna, Ariana Grande and Taylor Swift do take part in the production and engineering parts of making their records or even take over completely, so they have total control of their sound. It takes experience though and why shouldn’t everyone have that amount of creative control?

Doing all the mixing, correction and overdubbing can be laborious and takes a lot of skill, though. It can be very creative in itself too, which is why producers are often as famous as the artists they produce (think Quincy Jones or  Nile Rogers, for example). However, not everyone wanting to make their own music is interested in spending their time doing laborious mixing, but if you don’t yet have the skill yourself and cant afford to pay a producer what do you do? 

That was the need that David spotted. He wanted to do for music what instagram filters did for images, and make it easy for anyone to make and publish their own professional standard music. Based in part on his PhD research he developed tools that could do the mixing, leaving a musician to focus on experimenting with the sound itself.

David had spent several years leading the research team of an earlier startup he helped found called AI Music. It worked on adaptive music: music that changes based on what is happening around it, whether in the world or in a video game being played. It was later bought by Apple. This was the highlight of his career to that point and it helped cement his desire to continue to be an innovator and entrepreneur. 

With the help of Queen Mary, where he did his PhD, he therefore decided to set up his new company RoEx. It provides an AI driven mixing and mastering service. You choose basic mixing options as well as have the ability to experiment with different results, so still have creative control. However, you no longer need expensive equipment, nor need to build the skills to use it. The process becomes far faster too. Mixing your music becomes much more about experimenting with the sound: the machine having taken over the laborious parts, working out the optimum way to mix different tracks and produce a professional quality master recording at the end.

David  didn’t just see a need and have an idea of how to solve it, he turned it into something that people want to use by not only developing the technology, but also making sure he really understood the need. He worked with musicians and producers through a long research and development process to ensure his product really works for any musician.

– Paul Curzon, Queen Mary University of London

More on …


Magazines …


Our Books …


Subscribe to be notified whenever we publish a new post to the CS4FN blog.



This blog is funded through EPSRC grant EP/W033615/1.

Photogrammetry for fun, preservation and research – digitally stitching together 2D photographs to visualise the 3D world.

Composite image of one green glass bottle made from three photographs. Image by Jo Brodie
Composite image of one green glass bottle made from three photographs. Image by Jo Brodie

Imagine you’re the costume designer for a major new film about a historical event that happened 400 years ago. You’d need to dress the actors so that they look like they’ve come from that time (no digital watches!) and might want to take inspiration from some historical clothing that’s being preserved in a museum. If you live near the museum, and can get permission to see (or even handle) the material that makes it a bit easier but perhaps the ideal item is in another country or too fragile for handling.

This is where 3D imaging can help. Photographs are nice but don’t let you get a sense of what an object is like when viewed from different angles, and they don’t really give a sense of texture. Video can be helpful, but you don’t get to control the view. One way around that is to take lots of photographs, from different angles, then ‘stitch’ them together to form a three dimensional (3D) image that can be moved around on a computer screen – an example of this is photogrammetry.

In the (2D) example above I’ve manually combined three overlapping close-up photos of a green glass bottle, to show what the full size bottle actually looks like. Photogrammetry is a more advanced version (but does more or less the same thing) which uses computer software to line up the points that overlap and can produce a more faithful 3D representation of the object.

In the media below you can see a looping gif of the glass bottle being rotated first in one direction and then the other. This video is the result of a 3D ‘scan’ made from only 29 photographs using the free software app Polycam. With more photographs you could end up with a more impressive result. You can interact with the original scan here – you can zoom in and turn the bottle to view it from any angle you choose.

A looping gif of the 3D Polycam file being rotated one way then the other. Image by Jo Brodie

You might walk around your object and take many tens of images from slightly different viewpoints with your camera. Once your photogrammetry software has lined the images up on a computer you can share the result and then someone else would be able to walk around the same object – but virtually!

Photogrammetry is being used by hobbyists (it’s fun!) but is also being used in lots of different ways by researchers. One example is the field of ‘restoration ecology’ in particular monitoring damage to coral reefs over time, but also monitoring to see if particular reef recovery strategies are successful. Reef researchers can use several cameras at once to take lots of overlapping photographs from which they can then create three dimensional maps of the area. A new project recently funded by NERC* called “Photogrammetry as a tool to improve reef restoration” will investigate the technique further.

Photogrammetry is also being used to preserve our understanding of delicate historic items such as Stuart embroideries at The Holburne Museum in Bath. These beautiful craft pieces were made in the 1600s using another type of 3D technique. ‘Stumpwork’ or ‘raised embroidery’ used threads and other materials to create pieces with a layered three dimensional effect. Here’s an example of someone playing a lute to a peacock and a deer.

Satin worked with silk, chenille threads, purl, shells, wood, beads, mica, bird feathers, bone or coral; detached buttonhole variations, long-and-short, satin, couching, and knot stitches; wood frame, mirror glass, plush”, 1600s. Photo CC0 from Metropolitan Museum of Art uploaded by Pharos on Wikimedia.

A project funded by the AHRC* (“An investigation of 3D technologies applied to historic textiles for improved understanding, conservation and engagement“) is investigating a variety of 3D tools, including photogrammetry, to recreate digital copies of the Stuart embroideries so that people can experience a version of them without the glass cases that the real ones are safely stored in.

Using photogrammetry (and other 3D techniques) means that many more people can enjoy, interact with and learn about all sorts of things, without having to travel or damage delicate fabrics, or corals.

*NERC (Natural Environment Research Council) and AHRC (Arts and Humanities Research Council) are two organisations that fund academic research in universities. They are part of UKRI (UK Research & Innovation), the wider umbrella group that includes several research funding bodies.

Other uses of photogrammetry

Examples of cultural heritage and ecology are highlighted in the post but also interactive games (particularly virtual reality), engineering and crime scene forensics and the film industry use photogrammetry, an example is Mad Max: Fury Road which used the technique to create a number of its visual effects. Hobbyists also create 3D versions (called ‘3D assets’) of all sorts of objects and sell these to games designers to include in their games for players to interact with.

Careers

This was an example job advert (since closed) for a photogrammetry role in virtual reality.

Further reading

Other CS4FN posts about the use of 3D imaging

“The team behind the idea scanned several works of art using very accurate laser scanners that build up a 3D picture of the thing being scanned. From this they created a 3D model of the work. This then allowed a person wearing to feel as though they were touching the actual sculpture feeling all the detail.”

See also our collection of Computer Science & Research posts.


Subscribe to be notified whenever we publish a new post to the CS4FN blog.


This page is funded by EPSRC on research agreement EP/W033615/1.

QMUL CS4FN EPSRC logos