Singing bird – a human choir, singing birdsong

by Jane Waite, Queen Mary University of London

Image by Dieter from Pixabay

“I’m in a choir”. “Really, what do you sing?” “I did a blackbird last week, but I think I’m going to be woodpecker today, I do like a robin though!”

This is no joke! Marcus Coates a British artist, got up very early, and working with a wildlife sound recordist, Geoff Sample, he used 14 microphones to record the dawn chorus over lots of chilly mornings. They slowed the sounds down and matched up each species of bird with different types of human voices. Next they created a film of 19 people making bird song, each person sang a different bird, in their own habitats, a car, a shed even a lady in the bath! The 19 tracks are played together to make the dawn chorus. See it on YouTube below.

Marcus talks about his work, and the installation at Brighton Fabrica.

Marcus didn’t stop there, he wrote a new bird song score. Yes, for people to sing a new top ten bird hit, but they have to do it very slowly. People sing ‘bird’ about 20 times slower than birds sing ‘bird’ ‘whooooooop’, ‘whooooooop’, ‘tweeeeet’. For a special performance, a choir learned the new song, a new dawn chorus, they sang the slowed down version live, which was recorded, speeded back up and played to the audience, I was there! It was amazing! A human performance, became a minute of tweeting joy. Close your eyes and ‘whoop’ you were in the woods, at the crack of dawn!

Computationally thinking a performance

Computational thinking is at the heart of the way computer scientists solve problems. Marcus Coates, doesn’t claim to be a computer scientist, he is an artist who looks for ways to see how people are like other animals. But we can get an idea of what computational thinking is all about by looking at how he created his sounds. Firstly, he and wildlife sound recordist, Geoff Sample, had to focus on the individual bird sounds in the original recordings, ignore detail they didn’t need, doing abstraction, listening for each bird, working out what aspects of bird sound was important. They looked for patterns isolating each voice, sometimes the bird’s performance was messy and they could not hear particular species clearly, so they were constantly checking for quality. For each bird, they listened and listened until they found just the right ‘slow it down’ speed. Different birds needed different speeds for people to be able to mimic and different kinds of human voices suited each bird type: attention to detail mattered enormously. They had to check the results carefully, evaluating, making sure each really did sound like the appropriate bird and all fitted together into the Dawn Chorus soundscape. They also had to create a bird language, another abstraction, a score as track notes, and that is just an algorithm for making sounds!

Fun to try

Use your computational thinking skills to create a notation for an animal’s voice, a pet perhaps? A dog, hamster or cat language, what different sounds do they make, and how can you note them down. What might the algorithm for that early morning “I want my breakfast” look like? Can you make those sounds and communicate with your pet? Or maybe stick to tweeting? (You can follow @cs4fn on Twitter too).

Enjoy the slowed-down performance of this pet starling which has added a variety of mimicked sounds to its song repertoire.


This article was originally published on the CS4FN website and can also be found on page 15 in the magazine linked below. It also featured on Day 7 of our CS4FN Christmas Computing Advent Calendar.


Related Magazine …


EPSRC supports this blog through research grant EP/W033615/1.

Can a computer tell a good story?

A tale by Rafael Pérez y Pérez

What’s your favourite story? Perhaps it’s from a brilliant book you’ve read: a classic like Pride and Prejudice or maybe Twilight, His Dark Materials or a Percy Jackson story? Maybe it’s a creepy tale you heard round a campfire, or a favourite bedtime story from when you were a toddler? Could your favourite story have actually been written by a machine?

Stories are important to people everywhere, whatever the culture. They aren’t just for entertainment though. For millennia, people have used storytelling to pass on their ancestral wisdom. Religions use stories to explain things like how God created the world. Aesop used fables to teach moral lessons. Tales can even be used to teach computing! I even wrote a short story called ‘A Godlike Heart‘ about a kidnapped princess to help my students understand things like bits.

It’s clear that stories are important for humans. That’s why scientists like me are studying how we create them. I use computers to help. Why? Because they give a way to model human experiences as programs and that includes storytelling. You can’t open up a human’s brain as they create a story to see how it’s done. You can analyse in detail what happens inside a computer while it is generating one, though. This kind of ‘computational modelling’ gives a way to explore what is and isn’t going on when humans do it.

So, how to create a program that writes a story? A first step is to look at theories of how humans do it. I started with a book by Open University Professor Mike Sharples. He suggests it’s a continuous cycle between engagement and reflection. During engagement a storyteller links sequences of actions without thinking too much (a bit like daydreaming). During reflection they check what they have written so far, and if needed modify it. In doing so they create rules that limit what they can do during future rounds of engagement. According to him, stories emerge from a constant interplay between engagement and reflection.

What knowledge would you need to write a story about the last football World Cup?

With this in mind I wrote a program called MEXICA that generates stories about the ancient inhabitants of Mexico City (they are often wrongly called the Aztecs – their real name is the Mexicas). MEXICA simulates these engagement-reflection cycles. However, to write a program like this you need to solve lots of problems. For instance, what type of knowledge does the program need to create a story? It’s more complicated than you might think. What knowledge would you need to write a story about the last football World Cup? You would need facts about Brazilian culture, the teams that played, the game’s rules… Similarly, to write a story about the Mexicas you need to know about the ancient cultures of Mexico, their religion, their traditions, and so on. Figuring out the amount and type of knowledge that a system needs to generate a story is a key problem a computer scientist trying to develop a computerised storyteller needs to solve. Whatever the story you need to know something about human emotions. MEXICA uses its knowledge of them to keep track of the emotional links between the characters using them to decide sensible actions that then might follow.

By now you are probably wondering what MEXICA’s stories look like. Here’s an example:

“Jaguar Knight made fun of and laughed at Trader. This situation made Trader really angry! Trader thoroughly observed Jaguar Knight. Then, Trader took a dagger, jumped towards Jaguar Knight and attacked Jaguar Knight. Jaguar Knight’s state of mind was very volatile and without thinking about it Jaguar Knight charged against Trader. In a fast movement, Trader wounded Jaguar Knight. An intense haemorrhage aroused which weakened Jaguar Knight. Trader knew that Jaguar Knight could die and that Trader had to do something about it. Trader went in search of some medical plants and cured Jaguar Knight. As a result, Jaguar Knight was very grateful towards Trader. Jaguar Knight was emotionally tied to Trader but Jaguar Knight could not accept Trader’s behaviour. What could Jaguar Knight do? Trader thought that Trader overreacted; so, Trader got angry with Trader. In this way, Trader – after consulting a Shaman – decided to exile Trader.”

As you can see it isn’t able to write stories as well as a human yet! The way it phrases things is a bit odd, like “Trader got angry with Trader” rather than “Trader got angry with himself”. It’s missing another area of knowledge: how to write English naturally! Even so, the narratives it produces are interesting and tell us something about what does and doesn’t make a good story. And that’s the point. Programs like MEXICA help us better understand the processes and knowledge needed to generate novel, interesting tales. If one day we create a program that can write stories as well as the best writers we will know we really do understand how humans do it. Your own favourite story might not be written by a machine, but in the future, you might find your grandchildren’s favourite ones were!

If you like to write stories, then why not learn to program too then you could try writing a storytelling program yourself. Could you improve on MEXICA?

Rafael Pérez y Pérez, Universidad Autónoma Metropolitana, México

from the CS4FN archive

More on …

Related Magazines …


Subscribe to be notified whenever we publish a new post to the CS4FN blog.


This page is funded by EPSRC on research agreement EP/W033615/1.

QMUL CS4FN EPSRC logos