Was the first computer a ‘Bombe’?

Image from a set of wartime photos of GC&CS at Bletchley Park, Public domain, via Wikimedia Commons

A group of enthusiasts at Bletchley Park, the top secret wartime codebreaking base, rebuilt a primitive computing device used in the Second World War to help the Allies listen in on U-boat conversations. It was called ‘the Bombe’. Professor Nigel Smart, now at KU Leuven and an expert on cryptography, tells us more.

So What’s all this fuss about building “A Bombe”? What’s a Bombe?

The Bombe didn’t help win the war destructively like its explosive name-sakes but using intelligence. It was designed to find the passwords or ‘keys’ into the secret codes of ‘Enigma’: the famous encryption machine used both by the German army in the field and to communicate to U-Boats in the Atlantic. It effectively allowed the English to listen in to the German’s secret communications.

A Bombe is an electro-mechanical special purpose computing device. ‘Electro-mechanical’ because it works using both mechanics and electricity. It works by passing electricity through a circuit. The precise circuit that is used is modified mechanically on each step of the machine by drums that rotate. It used a set of rotating drums to mirror the way the Enigma machine used a set of discs which rotated when each letter was encrypted. The Bombe is a ‘special purpose’ computing device rather than a ‘general purpose’ computer because it can’t be used to solve any other problem than the one it was designed for.

Why Bombe?

There are many explanations of why it’s called a ‘Bombe’. The most popular is that it is named after an earlier, but unrelated, machine built by the Polish to help break Enigma called the Bomba. The Bomba was also an electro-mechanical machine and was called that because as it ran it made a ticking sound, rather like a clock-based fuse on an exploding bomb.

What problem did it solve?

The Enigma machine used a different main key, or password, every day. It was then altered slightly for each message by a small indicator sent at the beginning of each message. The goal of the codebreakers at Bletchley Park each day was to find the German key for that day. Once this was found it was easy to then decrypt all the day’s messages. The Bombe’s task was to find this day key. It was introduced when the procedures used by the Germans to operate the Enigma changed. This had meant that the existing techniques used by the Allies to break the Enigma codes could no longer be used. They could no longer crack the German codes fast enough by humans alone.

So how did it help?

The basic idea was that many messages sent would consist of some short piece of predictable text such as “The weather today will be….” Then using this guess for the message that was being encrypted the cryptographers would take each encrypted message in turn and decide whether it was likely that it could have been an encryption of the guessed message. The fact that the German army was trained to say and write “Heil Hitler” at any opportunity was a great help too!

The words “Heil, Hitler” help the German’s lose the war

If they found one that was a possible match they would analyze the message in more detail to produce a “menu”. A menu was just what computer scientists today call a ‘graph’. It is a set of nodes and edges, where the nodes are letters of the alphabet and the edges link the letters together a bit like the way a London tube map links stations (the nodes) by tube lines (the edges). If the graph had suitable mathematical properties that they checked for, then the codebreakers knew that the Bombe might be able to find the day key from the graph.

The menu, or graph, was then sent over to one of the Bombe’s. They were operated by a team of women – the World’s first team of computer operators. The operator programmed the Bombe by using wires to connect letters together on the Bombe according to the edges of the menu. The Bombe was then set running. Every so often it would stop and the operator would write down the possible day key which it had just found. Finally another group checked this possible day key to see if the Bombe had produced the correct one. Sometimes it had, sometimes not.

So was the Bombe a computer?

By a computer today we usually mean something which can do many things. The reason the computer is so powerful is that we can purchase one piece of equipment and then use this to run many applications and solve many problems. It would be a big problem if we needed to buy one machine to write letters, one machine to run a spreadsheet, one machine to play “Grand Theft Auto” and one machine to play “Solitaire”. So, in this sense the Bombe was not a computer. It could only solve one problem: cracking the Enigma keys.

Whilst the operator programmed the Bombe using the menu, they were not changing the basic operation of the machine. The programming of the Bombe is more like the data entry we do on modern computers.

Alan Turing who helped design the Bombe along with Gordon Welchman, is often called the father of the computer, but that’s not for his work on the Bombe. It’s for two other reasons. Firstly before the war he had the idea of a theoretical machine which could be programmed to solve any problem, just like our modern computers. Then, after the war he used the experience of working at Bletchley to help build some of the worlds first computers in the UK.

But wasn’t the first computer built at Bletchley?

Yes, Bletchley park did build the first computer as we would call it. This was a machine called Colossus. Colossus was used to break a different German encryption machine called the Lorenz cipher. The Colossus was a true computer as it could be used to not only break the Lorenz cipher, but it could also be used to solve a host of other problems. It also worked using digital data, namely the set of ones and zeros which modern computers now operate on.

Nigel Smart, KU Leuven

More on …

Subscribe to be notified whenever we publish a new post to the CS4FN blog.


This page is funded by EPSRC on research agreement EP/W033615/1.

QMUL CS4FN EPSRC logos

Alan Turing’s life

by Jonathan Black, Paul Curzon and Peter W. McOwan, Queen Mary University of London

From the archive

Alan Turing Portrait
Image of Alan Turing: Elliott & Fry, Public domain, via Wikimedia Commons

Alan Turing was born in London on 23 June 1912. His parents were both from successful, well-to-do families, which in the early part of the 20th century in England meant that his childhood was pretty stuffy. He didn’t see his parents much, wasn’t encouraged to be creative, and certainly wasn’t encouraged in his interest in science. But even early in his life, science was what he loved to do. He kept up his interest while he was away at boarding school, even though his teachers thought it was beneath well-bred students. When he was 16 he met a boy called Christopher Morcom who was also very interested in science. Christopher became Alan’s best friend, and probably his first big crush. When Christopher died suddenly a couple of years later, Alan partly helped deal with his grief with science, by studying whether the mind was made of matter, and where – if anywhere – the mind went when someone died.

The Turing machine

After he finished school, Alan went to the University of Cambridge to study mathematics, which brought him closer to questions about logic and calculation (and mind). After he graduated he stayed at Cambridge as a fellow, and started working on a problem that had been giving mathematicians headaches: whether it was possible to determine in advance if a particular mathematical proposition was provable. Alan solved it (the answer was no), but it was the way he solved it that helped change the world. He imagined a machine that could move symbols around on a paper tape to calculate answers. It would be like a mind, said Alan, only mechanical. You could give it a set of instructions to follow, the machine would move the symbols around and you would have your answer. This imaginary machine came to be called a Turing machine, and it forms the basis of how modern computers work.

Code-breaking at Bletchley Park

By the time the Second World War came round, Alan was a successful mathematician who’d spent time working with the greatest minds in his field. The British government needed mathematicians to help them crack the German codes so they could read their secret communiqués. Alan had been helping them on and off already, but when war broke out he moved to the British code-breaking headquarters at Bletchley Park to work full-time. Based on work by Polish mathematicians, he helped crack one of the Germans’ most baffling codes, called the Enigma, by designing a machine (based on earlier version by the Poles again!) that could help break Enigma messages as long as you could guess a small bit of the text (see box). With the help of British intelligence that guesswork was possible, so Alan and his team began regularly deciphering messages from ships and U-boats. As the war went on the codes got harder, but Alan and his colleagues at Bletchley designed even more impressive machines. They brought in telephone engineers to help marry Alan’s ideas about logic and statistics with electronic circuitry. That combination was about to produce the modern world.

Building a brain

The problem was that the engineers and code-breakers were still having to make a new machine for every job they wanted it to do. But Alan still had his idea for the Turing machine, which could do any calculation as long as you gave it different instructions. By the end of the war Alan was ready to have a go at building a Turing machine in real life. If it all went to plan, it would be the first modern electronic computer, but Alan thought of it as “building a brain”. Others were interested in building a brain, though, and soon there were teams elsewhere in the UK and the USA in the race too. Eventually a group in Manchester made Alan’s ideas a reality.

Troubled times

Not long after, he went to work at Manchester himself. He started thinking about new and different questions, like whether machines could be intelligent, and how plants and animals get their shape. But before he had much of a chance to explore these interests, Alan was arrested. In the 1950s, gay sex was illegal in the UK, and the police had discovered Alan’s relationship with a man. Alan didn’t hide his sexuality from his friends, and at his trial Alan never denied that he had relationships with men. He simply said that he didn’t see what was wrong with it. He was convicted, and forced to take hormone injections for a year as a form of chemical castration.

Although he had had a very rough period in his life, he kept living as well as possible, becoming closer to his friends, going on holiday and continuing his work in biology and physics. Then, in June 1954, his cleaner found him dead in his bed, with a half-eaten, cyanide-laced apple beside him.

Alan’s suicide was a tragic, unjust end to a life that made so much of the future possible.

More on …

Related Magazines …

cs4fn issue 14 cover

This blog is funded through EPSRC grant EP/W033615/1.

HMS Belfast: destroying the destroyer

by Paul Curzon, Queen Mary University of London

HMS Belfast

On the South Bank of the Thames in the centre of London lies the HMSBelfast. Now a museum ship, it once took part in one of the most significant sea battles of the Second World War. It fought the Scharnhorst in the last great sea battle based on the power of great guns. The Belfast needed more than just brilliant naval tactics to stand a chance. It needed help from computer science and electronic engineering too. In fact, without some brilliant computer science the battle would never have been fought in the first place. It came about because of the work of the code crackers at Bletchley Park.

Getting supplies across the Atlantic and then round to Russia was critical to both the British and Russian’s survival. By 1943 the threat of submarines had been countered. The battleship Tirpitz had also been disabled. However, the formidable battle cruiser Scharnhorst was left and it was the scourge of the Allied convoys. It sank 11 supply ships in one operation early in 1941. In another, it destroyed a weather station on Spitzbergen island that the Allies used to decide when convoys should set off.

By Christmas 1943 something had to be done about the Scharnhorst, but how to catch it, never mind stop it? A trap was needed. A pair of convoys going to and from Russia were a potential bait. The Nazis knew the target was there for the taking: the Scharnhorst was in a nearby port. Would they take that bait though, and how could the British battle ships be in the right place at the right time to not only stop it, but destroy it?

The Allies had an ace up their sleeve. Computer Science. By this point in the war a top secret team at Bletchley Park had worked out how to crack the Enigma encryption machine that was used to send coded messages by the German Navy. It was always easy to listen in to radio broadcasts, you just needed receivers in the right places, but if the messages were in code that didn’t help. You had to crack the day’s code to know what they were saying. Based on an improved approach, originally worked out by Polish mathematicians, the Brits could do it using special machines that were precursors to the first electronic computers. They intercepted messages that told them that Scharnhorst was preparing to leave. It was taking the bait.

The British had two groups of ships. The Belfast, the Norfolk and the Sheffield were coming from Russia protecting the returning convoy. The HMS Duke of York was tracking the new convoy heading to Russia. Both were keeping their distance so the convoys looked unprotected. They needed to know when and where the Scharnhorst would attack. Bletchley Park were listening in to everything though, and doing it so well they were reading the messages almost as soon as the Germans. At 2am on Boxing Day morning the Belfast got the message from Admiralty Head quarters that SCHARNHORST PROBABLY SAILED AT 1800 25 DECEMBER. A further radio signal from the Scharnhorst asking for a weather report allowed the spies to work out exactly where the ship was by picking up the signal from different listening stations and triangulating: drawing a line on a map from each station in the direction the radio signal came from. The point they meet is the ship’s location. This is an example of meta-data (information about a message rather than the message itself) giving vital information away. The spies had done their job. It was enough to tell Vice Admiral Burnett on the Belfast where the Scharnhorst was aiming to attack the convoys. They could lie in wait. At this point, electronic engineering mattered. The Belfast had better radar than the Scharnhorst. They detected its approach without the Scharnhorst having any idea they were there. The first the Captain of the Scharnhorst knew was when they were hit by shells from the Norfolk. The Belfast ended up out of position at the critical point though and couldn’t join in. The faster Scharnhorst turned tail and ran. The Brits had had their chance and blown it!

Burnett now needed luck and intuition. He guessed the Scharnhorst would try another attack on the convoy. They took up a new waiting position rather than actively trying to find the Scharnhorst as others wanted them to do. By midday the radar picked it up again. The trap was reset, though this time the initial surprise was lost. An all out battle began, with radar helping once again, this time as a way to aim shells even when the enemy wasn’t in sight. Having failed to reach the convoy undetected a second time the Scharnhorst retreated as the battle continued. What they didn’t know was that they were retreating deeper into the trap: heading directly towards the waiting Duke of York. The chasing Belfast stopped firing and dropped back, making the Scharnhorst crew think they were safe. In fact, they were still being followed and tracked by radar once more, though only by the Belfast as the other ships had actually been partially disabled. Had the Scharnhorst known, they could have just stopped and taken out the Belfast. After several hours of silent shadowing, the Belfast picked up the Duke of York on the radar, and were able to communicate with them. The Scharnhorst’s radar had been crippled in the battle and thought it was alone.

The Belfast fired shells that lit up the sky behind the Scharnhorst as seen from the Duke of York, then largely watched the battle. Luck was on their side: the Scharnhorst was crippled and then sunk by torpedoes. Over a thousand German sailors sadly died. The crew of the Belfast were well aware that it could just as easily have been them, sealed in to a giant metal coffin, as it sank, and so held a memorial for the dead Germans afterwards.

The Belfast didn’t fire the torpedoes that finally sank the Scharnhorst and was not the key player in the final battle. However, it was the one that was in the right place to save the convoy, thanks to the Enigma decrypts combined with the Vice Admiral’s intuition. It was also the one that pushed the Scharnhorst into the deadly trap, with its superior radar then giving it the advantage.

It is easy to under-estimate the importance of the Bletchley Park team to the war, but they repeatedly made the difference, as with the Scharnhorst, making Allied commanders look amazing. It is much easier to be amazing when you know everything the other side says! The Scharnhorst is just one example of how Computer Science and Electronic Engineering help win wars, and here, in the long run at least, save lives. Today having secure systems matters to everyone not just to those waging war. We rely on them for our bank system, our elections, as well as for our everyday privacy, whether from hacking newspapers or keeping our health records secret from ruthless companies wanting to exploit us. Cyber security matters.

More on …